

Chapter 7: Hypothesis Testing Procedures

Dr. Daniel B. Rowe
Professor of Computational Statistics
Department of Mathematical and Statistical Sciences
Marquette University

Copyright D.B. Rowe 1

Hypothesis Testing

We make decisions every day in our lives.

Should I believe A or should I believe B (not A)?

Two Competing Hypotheses. A and B.

Null Hypothesis (H_0): No difference, no association, or no effect.

Alternative Hypothesis (H₁): Investigators belief.

The Alternative Hypothesis is always set up to be what you want to build up evidence to prove.

$$\hat{p} = \frac{x}{n}$$

Example: Friend's Party.

 H_0 : The party will be boring.

VS.

H₁: The party will be fun.

I wish that every time I had to make a decision, I could calculate a measure and use this measure (test statistic) to decide what to do.

Maybe use \hat{P} the sample proportion of fun parties friend has had? I might believe the party will be fun if \hat{P} is "large."

$$\overline{X} = \frac{1}{n} \sum X$$

Example: Men's Weight.

 H_0 : The mean weight of men is equal to 191 lbs. $\mu = 191$ lbs vs.

 H_1 : The mean weight of men is greater than 191 lbs. $\mu > 191$ lbs

I wish that every time I had to make a decision, I could calculate a measure and use this measure (test statistic) to decide what to do.

Maybe use \overline{X} the sample mean weight of men? I might believe men's mean weight ≥ 191 if \overline{X} is "large."

Example: H_0 : $\mu = 191 \text{ lbs } vs. H_1$: $\mu \ge 191 \text{ lbs}$

To test the hypothesis, take a sample of n=100 men's weights.

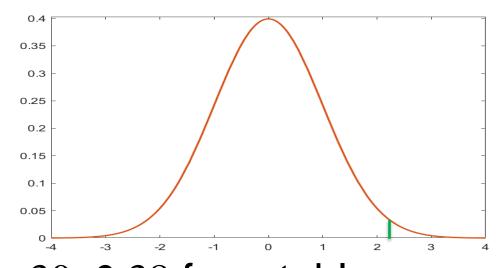
Suppose n=100, $\overline{X} = 197.1$ lbs, and s=25.6 lbs.

Is 197.1 statistically larger than 191?

In hypothesis testing we assume H_0 is true, then see how likely \bar{X} is.

$$P(\bar{X} > 197.1) = P\left(\frac{\bar{X} - 191}{25.6 / \sqrt{100}} > \frac{197.1 - 191}{25.6 / \sqrt{100}}\right)$$

$$P(z > 2.38) = 1 - 0.9913 = 0.0087$$
 very unlikely



Assumed that \bar{X} was normal and used z because n>30. 2.38 from table

Example: H_0 : $\mu = 191 \text{ lbs } vs. H_1$: $\mu \ge 191 \text{ lbs}$

To test the hypothesis, take a sample of n=100 men's weights.

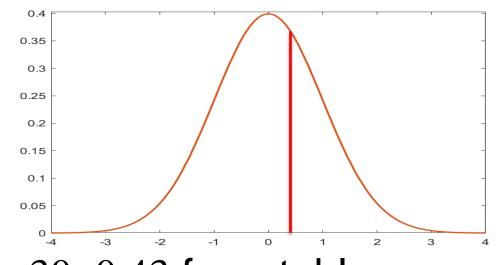
Suppose n=100, $\overline{X} = 192.1$ lbs, and s=25.6 lbs.

Is 192.1 statistically larger than 191?

In hypothesis testing we assume H_0 is true, then see how likely \bar{X} is.

$$P(\bar{X} > 192.1) = P\left(\frac{\bar{X} - 191}{25.6 / \sqrt{100}} > \frac{192.1 - 191}{25.6 / \sqrt{100}}\right)$$

$$P(z > 0.43) = 1 - 0.6664 = 0.3336$$
 somewhat unlikely



Assumed that \bar{X} was normal and used z because n>30. 0.43 from table

Where do we draw the line?

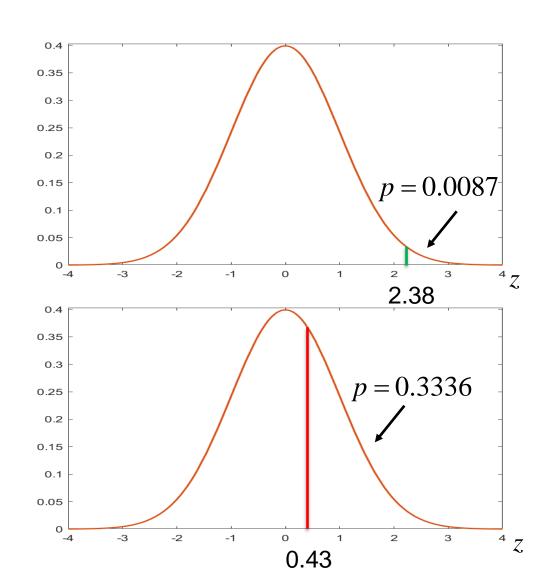
Suppose
$$n=100$$
, $\overline{X} = 197.1$ lbs, and $s=25.6$ lbs.

$$P(z > 2.38) = 1 - 0.9913 = 0.0087$$
 very unlikely

Suppose
$$n=100$$
, $\overline{X} = 192.1$ lbs, and $s=25.6$ lbs.

$$P(z > 0.43) = 1 - 0.6664 = 0.3336$$
 somewhat unlikely

We need a scientific way to select a cut-off α (probability) or *z-value* (critical value).



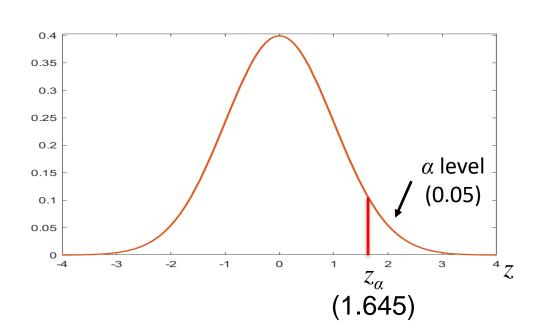
cut-off(s) called **critical value(s)** and depend on significance level α

We will select a **Level of Significance** α .

$$\alpha = P(Reject \ H_0 | H_0 \ is \ true)$$

Find *z-value*, z_{α} that corresponds to this α level.

Reject the Null Hypothesis H_0 in favor of the Alternative Hypothesis H_1 When z-value > z_α or p-value < α .



This will be our scientific way to determine whether to believe the null hypothesis H_0 or alternative hypothesis H_1 .

The hypothesis testing process consists of 5 Steps.

Step 1: Set up the hypotheses and determine the level of significance.

Step 2: Select the appropriate test statistic.

Step 3: Set-up the decision rule.

Step 4: Compute the test statistic.

Step 5: Conclusion.

The hypothesis testing process consists of 5 Steps.

Step 1: Set up the hypotheses and determine the level of significance.

State the null and the alternative hypotheses.

H₀: Null Hypothesis (no change, no difference)

VS.

H₁: Research Hypothesis (investigators belief, what we want to prove)

Select a level of significance α . α =0.05

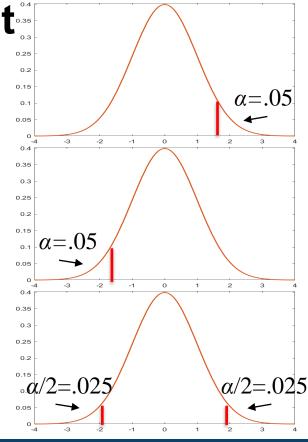
The hypothesis testing process consists of 5 Steps.

Step 1: Set up the hypotheses and determine the level of significance. There are three possible pairs.

 H_0 : $\mu = \mu_0$ vs. H_1 : $\mu > \mu_0$ (prove greater than, upper tailed test separate X or X or

 H_0 : $\mu = \mu_0$ vs. H_1 : $\mu < \mu_0$ (prove less than, **lower tailed test**) \geq reject for "small" \overline{X} or z's

 H_0 : $\mu = \mu_0$ vs. H_1 : $\mu \neq \mu_0$ (prove not equal to, **two-tailed test**) reject for "large" or "small" \overline{X} or z's



The hypothesis testing process consists of 5 Steps.

Step 2: Select the appropriate test statistic.

The test statistic is a single (decision) number.

$$n ext{ large}$$
 $n ext{ small}$
$$z = rac{ar{X} - \mu_0}{s / \sqrt{n}}$$

$$t = rac{ar{X} - \mu_0}{s / \sqrt{n}}$$
 $df = n - 1$

Use the test statistic that depends on data and null hypothesis with a critical value z_a (or $t_{a,df}$) that depends on significance level α to make decision.

We will test hypotheses on various parameters with various test statistics.

The hypothesis testing process consists of 5 Steps.

Step 3: Set-up the decision rule.

(1.645)

$$H_0: \mu = \mu_0 \text{ Vs. } H_1: \mu > \mu_0 \\ \text{rejection} \\ \text{region} \\$$

Reject H_0 if $z \ge z_\alpha$

Reject H_0 if $z \leq z_\alpha$

(-1.645)

Reject $H_0 z \le z_{\alpha/2}$ or $z \ge z_{\alpha/2}$

(1.960)

(-1.960)

The hypothesis testing process consists of 5 Steps.

Step 4: Compute the test statistic.

Use sample data $x_1,...,x_n$ and hypothesized value μ_0 to compute z (or t).

Compare test statistic z (or t) to critical value(s) $z_{\alpha/2}$ (or $t_{\alpha/2,df}$) with rule.

Step 5: Conclusion.

Make a decision, reject H_0 or not to reject H_0 .

Interpret the results.

There are two types of error we can make. Type I error rate.

$$\alpha = P(\text{Type I Error}) = P(\text{Reject H}_0|\text{H}_0 \text{ is true})$$

Sometimes called the false positive rate.

Type II error rate.

$\beta = P(\text{Type I})$	I Error) = $P($	Do Not Reject	H ₀ H ₀ is false)
ρ Γ	I Diror,		I I I I I I I I I I I I I I I I I I I

Sometimes called the false negative rate.

	H_0 True	H_0 False
Fail to Reject H_0	Correct Decision (1-α)	Type II Error (β)
Reject H ₀	Type I Error (α)	Correct Decision $(1-\beta)$

7.2 tests with One Sample, Continuous Outcome

Covers same material as Section 7.1 but additional small sample test with *t* statistic.

TABLE 7-4

Test Statistic for Testing H_0 : $\mu = \mu_0$

$$n \ge 30$$
 $z = \frac{\overline{X} - \mu_0}{s / \sqrt{n}}$ (Find critical value in Table 1C)
$$n < 30$$
 $t = \frac{\overline{X} - \mu_0}{s / \sqrt{n}}$ (Find critical value in Table 2, $df = n - 1$)

7.3 Tests with One Sample, Dichotomous Outcome

To test hypothesis on a proportion, we follow the same 5 Steps.

Step 1: Set up the hypotheses and determine the level of significance.

$$H_0$$
: $p = p_0$ vs. H_1 : $p > p_0$, H_0 : $p = p_0$ vs. H_1 : $p < p_0$, H_0 : $p = p_0$ vs. H_1 : $p \neq p_0$

Step 2: Select the appropriate test statistic.

Assume *n* is large.
$$z = (\hat{p} - p_0) / \sqrt{p_0 (1 - p_0) / n}$$
 $\hat{p} = \frac{x}{n}$

Step 3: Set-up the decision rule.

Reject
$$H_0$$
 if $z \ge z_{\alpha}$, Reject H_0 if $z \le z_{\alpha}$, Reject H_0 $z \ge z_{\alpha/2}$ or $z \le z_{\alpha/2}$

Step 4: Compute the test statistic.

$$z = a number$$

Step 5: Conclusion.

D.B. Rowe

Compare test statistic to critical value(s). Make a decision.

7.3 Tests with One Sample, Dichotomous Outcome

Example: Is proportion of children using dental service different from 0.86?

Step 1: Null and Alternative Hypotheses.

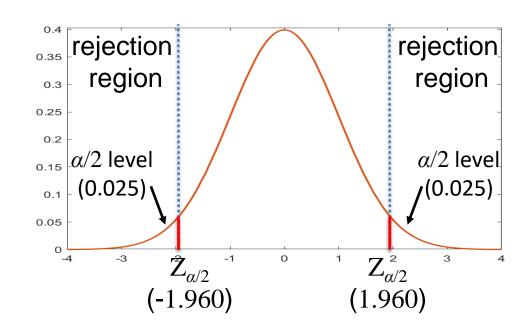
$$H_0$$
: $p = 0.86$ vs. H_1 : $p \neq 0.86$

Step 2: Test Statistic.

$$z = (\hat{p} - p_0) / \sqrt{p_0 (1 - p_0) / n}$$

Step 3: Decision Rule. α =0.05

Reject H₀ if $z \le -1.960$ or $z \ge 1.960$.



Step 4: Compute test statistic.
$$n=125$$
, $x=64$, $\hat{p}=x/n=0.512$.

$$z = (0.512 - 0.86) / \sqrt{0.86(1 - 0.86) / 125} = -11.21$$

Step 5: Conclusion

Because $z \le -1.96$, reject and conclude proportion different from 0.86.

There are cases with more than two Yes/No categories. Binomial

Assume that we have n items classified into one of k categories.

We have a hypothesis about the true proportions for each category.

We want to test to see if our hypothesis is correct, or something different.

We can do this with a scientific statistical hypothesis test.

To test hypothesis on a proportion, we follow the same 5 Steps.

Step 1: Set up the hypotheses and determine the level of significance.

$$H_0: p_1 = p_{01}, ..., p_k = p_{0k}$$
 vs. $H_1: H_0$ false (only one pair)

Step 2: Select the appropriate test statistic.

$$\chi^2 = \sum (O - E)^2 / E \qquad df = k-1 \qquad E_i = np_{0i}$$

Step 3: Set-up the decision rule.

Reject
$$H_0$$
 if $\chi^2 \ge \chi^2_{\alpha,df}$.

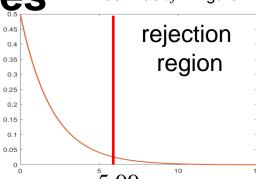
Step 4: Compute the test statistic.

Step 5: Conclusion.
$$\chi^2 = a \ number$$

Compare test statistic to critical value. Make a decision.

Book has df=1 figure.

Example: Health Survey. n = 470



Step 1: Set up the hypotheses and determine the level of significance. 5.99

$$H_0$$
: $p_1 = 0.60$, $p_2 = 0.25$, $p_3 = 0.15$ vs. H_1 : H_0 : false (only one pair)

 $\alpha = 0.05$

Step 2: Select the appropriate test statistic.

$$\chi^2 = \sum (O - E)^2 / E$$

$$df=k-1$$

$$E_i = np_{0i}$$

Step 3: Set-up the decision rule.

Reject H₀ if
$$\chi^2 \ge \chi^2_{0.05,2} = 5.99$$
. Table 3 next slide

Step 4: Compute the test statistic.

$$\chi^2 = \frac{(255 - 282)^2}{282} + \frac{(125)^2}{282}$$

$$\chi^2 = \frac{(255 - 282)^2}{282} + \frac{(125 - 177.5)^2}{177.5} + \frac{(90 - 70.5)^2}{70.5} = 8.46$$

Since $\chi^2 = 8.46 \ge \chi^2_{0.05,2} = 5.99$, reject H₀ conclude p's not what we hypothesize.

TABLE 3. Critical Values of the χ2 Distribution

Table entries represent values from χ^2 distribution with upper tail area equal to α .

$$P(\chi_{of}^2 > \chi^2) = \alpha$$
, e.g., $P(\chi_3^2 > 7.81) = 0.05$

**											
df	.10	.05	.025	.01	.005	df	.10	.05	.025	.01	.005
1	2.71	3.84	5.02	6.63	7.88	11	17.28	19.68	21.92	24.72	26.76
2	4.61	5.99	7.38	9.21	10.60	12	18.55	21.03	23.34	26.22	28.30
3	6.25	7.81	9.35	11.34	12.84	13	19.81	22.36	24.74	27.69	29.82
4	7.78	9.49	11.14	13.28	14.86	14	21.06	23.68	26.12	29.14	31.32
5	9.24	11.07	12.83	15.09	16.75	15	22.31	25.00	27.49	30.58	32.80
,	10.77	12.50	1/ /E	1/ 01	10 55	16	23.54	26.30	28.85	32.00	34.27
0	10.64	12.59	14.45	16.81	18.55	17	24.77	27.59	30.19	33.41	35.72
7	12.02	14.07	16.01	18.48	20.28	18	25.99	28.87	31.53	34.81	37.16
8	13.36	15.51	17.53	20.09	21.95	19	27.20	30.14	32.85	36.19	38.58
9	14.68	16.92	19.02	21.67	23.59	20	28.41	31.41	34.17	37.57	40.00
10	15.99	18.31	20.48	23.21	25.19	21	29.62	32.67	35.48	38.93	41.40
						22	30.81	33.92	36.78	40.29	42.80
						23	32.01	35.17	38.08	41.64	44.18
						24	33.20	36.42	39.36	42.98	45.56

Questions?

Homework 7

Read Chapter 7.

Problems # 4, *, 9

* A doctor believes that less than 20% of patients have a certain disease. In a random sample of n=100 patients, x=17 had the disease. Test the hypotheses H_0 : $p \ge 0.20$ vs. H_1 : p < 0.20 at $\alpha = 0.025$.