

Chapter 6: Confidence Interval Estimates

Dr. Daniel B. Rowe
Professor of Computational Statistics
Department of Mathematical and Statistical Sciences
Marquette University

Copyright D.B. Rowe 1

6.1 Introduction to Estimation

A **Point Estimate** for a population parameter is a single-valued estimate of that parameter. i.e. \overline{X} for μ or s^2 for σ^2 .

A Confidence Interval (CI) estimate is a range of values for a population parameter with a confidence attached (i.e., 95%).

A CI starts with the point estimate and builds in what is called the **Margin of Error**. The margin of error incorporates probabilities.

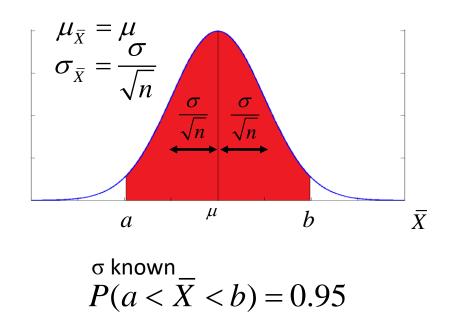
$$\bar{X} \pm that depends on a probability$$
PE ME

6.1 Introduction to Estimation

We will have confidence intervals for several scenarios.

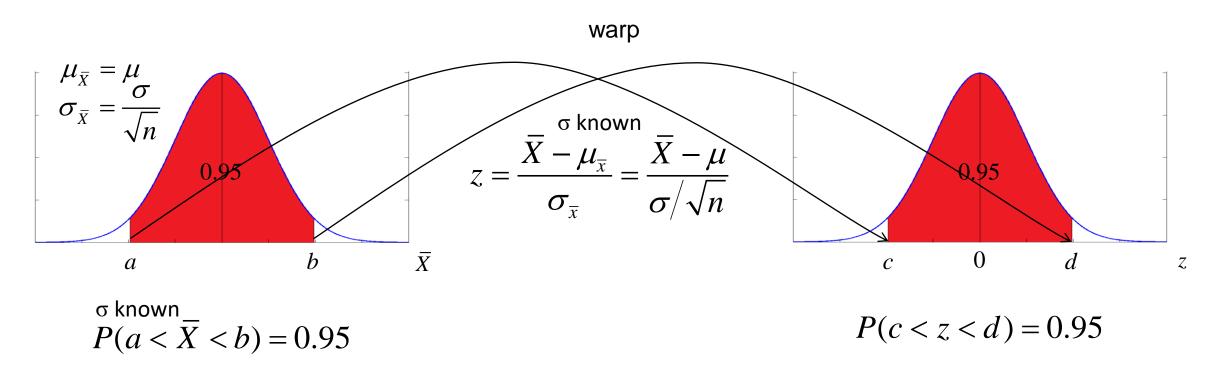
Number of Samples	Outcome Variable	Parameter to be Estimated
One sample	Continuous	Mean: μ
Two independent samples	Continuous	Difference in means: $\mu_1 - \mu_2$
Two dependent, matched samples	Continuous	Mean difference: $\mu_d = \mu_1 - \mu_2$
One sample	Dichotomous	Proportion (e.g., prevalence, cumulative incidence): <i>p</i>
Two independent samples	Dichotomous	Difference or ratio of proportions (e.g., $: p_1 - p_2$, attributable risk, relative risk, odds ratio) p_1 / p_2

We know that if n is "large" then \overline{X} has a normal distribution. We can make probability statements. First we assume σ known.



Want to find a and b.

We know that if n is "large" then \overline{X} has a normal distribution. We convert from \overline{X} to z and find our values for area (probability).



We get that
$$c$$
=-1.96 and d =+1.96.

We know that if n is "large" then X has a normal distribution. Performing a little algebra.

$$1.96 > z \qquad -1.96 < z$$

$$1.96 > \frac{\overline{X} - \mu_{\overline{x}}}{\sigma_{\overline{x}}} \qquad -1.96 < \frac{\overline{X} - \mu_{\overline{x}}}{\sigma_{\overline{x}}}$$

$$96 \frac{\sigma}{\overline{}} > \overline{X} - \mu$$

$$-1.96 \frac{\sigma}{\overline{}} < \overline{X} - \mu$$

$$1.96\frac{\sigma}{\sqrt{n}} - \bar{X} > -\mu$$

$$\bar{X} - 1.96 \frac{\sigma}{\sqrt{n}} < \mu$$

$$\bar{X} + 1.96 \frac{\sigma}{\sqrt{n}} > \mu$$

$$1.96 > Z$$

$$1.96 > \overline{X} - \mu_{\overline{X}}$$

$$1.96 \frac{\sigma}{\sqrt{n}} > \overline{X} - \mu$$

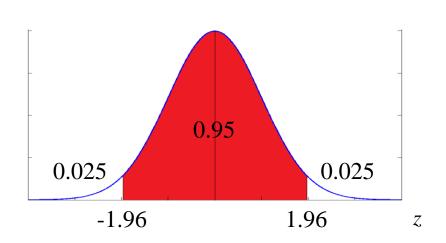
$$1.96 \frac{\sigma}{\sqrt{n}} > \overline{X} - \mu$$

$$1.96 \frac{\sigma}{\sqrt{n}} > \overline{X} - \mu$$

$$1.96 \frac{\sigma}{\sqrt{n}} - \overline{X} > -\mu$$

$$-1.96 \frac{\sigma}{\sqrt{n}} < \overline{X} - \mu$$

$$\overline{X} - 1.95 \frac{\sigma}{\sqrt{n}} < \mu < \overline{X} + 1.95 \frac{\sigma}{\sqrt{n}}$$



$$P(c < z < d) = 0.95$$

$$c = -1.96$$
 $d = 1.96$

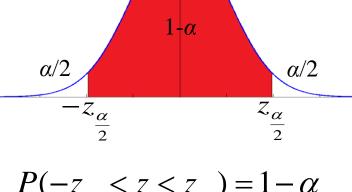
Look for 0.975 in the table and note row 1.9 and col 0.06. The z value that has an area of 0.975 less than it is 1.96.

We know that if n is "large" then \overline{X} has a normal distribution.

Therefore a 95% CI for μ is $\bar{X} \pm 1.96 \frac{\sigma}{\sqrt{n}}$.

More generally, a $100(1-\alpha)\%$ CI for μ is:

$$\bar{X} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}$$



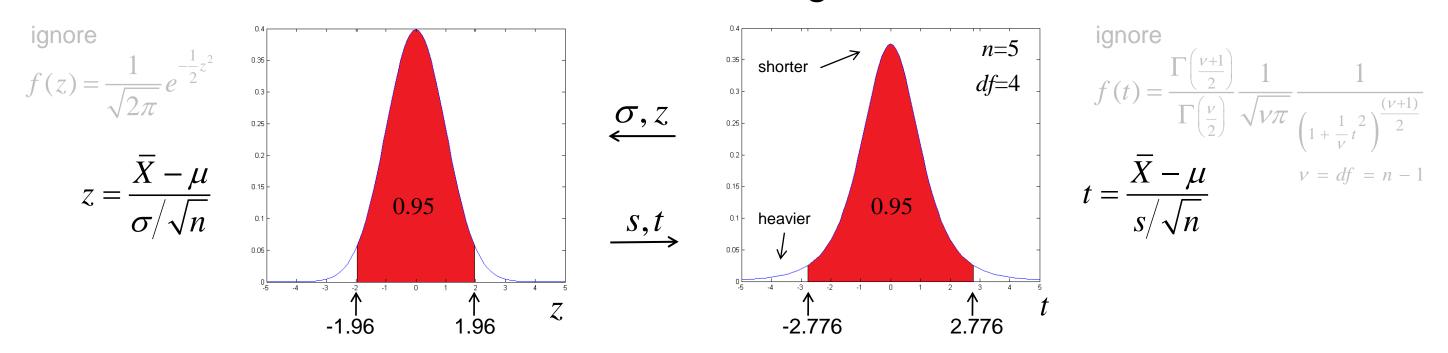
P(c < z < d) = 0.95

$$P(-z_{\underline{\alpha}} < z < z_{\underline{\alpha}}) = 1 - \alpha$$
from table

where $z_{\underline{\alpha}}$ is the z value that has area of $\alpha/2$ larger.

May see $z(\alpha/2)$.

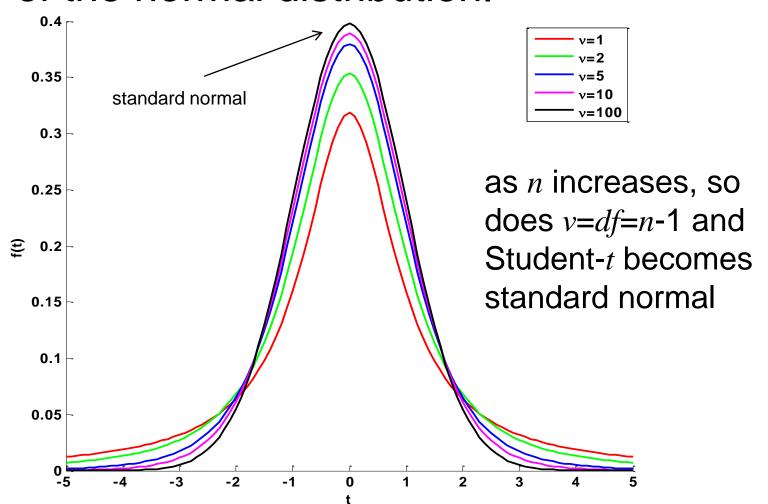
However, we never truly know what σ is, so we estimate it by s. But when we do this our distribution changes from normal-z to Student-t.



$$\overline{X} \pm z_{\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}} \longrightarrow \overline{X} \pm t_{\frac{\alpha}{2}, df} \frac{s}{\sqrt{n}}$$

By using s instead of σ we have more variability. Additional variability depends on n. $s \to \sigma$ as $n \nearrow$

The Student-*t* distribution is like a superset of the normal distribution.



Confidence Level	80%	90%	95%	98%	99%
Two-Sided Test α	.20	.10	.05	.02	.01
One-Sided Test α	.10	.05	.025	.01	.005
df					
1	3.078	6.314	12.71	31.82	63.66
2	1.886	2.920	4.303	6.965	9.925
3	1.638	2.353	3.182	4.541	5.841
4	1.533	2.132	2.776	3.747	4.604
5	1.476	2.015	2.571	3.365	4.032
6	1.440	1.943	2.447	3.143	3.707
7	1.415	1.895	2.365	2.998	3.499
8	1.397	1.860	2.306	2.896	3.355
9	1.383	1.833	2.262	2.821	3.250
10	1.372	1.812	2.228	2.764	3.169
11	1.363	1.796	2.201	2.718	3.106
12	1.356	1.782	2.179	2.681	3.055
13	1.350	1.771	2.160	2.650	3.012
14	1.345	1.761	2.145	2.624	2.977
15	1.341	1.753	2.131	2.602	2.947
16	1.337	1.746	2.120	2.583	2.921
17	1.333	1.740	2.110	2.567	2.898
18	1.330	1.734	2.101	2.552	2.878
19	1.328	1.729	2.093	2.539	2.861
20	1.325	1.725	2.086	2.528	2.845
21	1.323	1.721	2.080	2.518	2.831
22	1.321	1.717	2.074	2.508	2.819
23	1.319	1.714	2.069	2.500	2.807
24	1.318	1.711	2.064	2.492	2.797
25	1.316	1.708	2.060	2.485	2.787
26	1.315	1.706	2.056	2.479	2.779
27	1.314	1.703	2.052	2.473	2.771
28	1.313	1.701	2.048	2.467	2.763
29	1.311	1.699	2.045	2.462	2.756
Z 30	1.310	1.697	2.042	2.457	2.750
∞ ∞	1.282	1.645	1.960	2.326	2.576

D.B. Rowe

9

Example: Find the value of $t_{0.025,10}$.

$$\alpha/2$$
 $df=n-1$

The (critical) value of *t* that has an area of 0.025 larger than it when we have 10 degrees of freedom is 2.228.

This is the value we use for a 95% CI when α =0.05 and n=11.

Book says $n \ge 30$ use bottom z value.

			<u> </u>		,
Confidence Level	80%	90%	95%	98%	9
Two-Sided Test α	.20	.10	.05	.02	
One-Sided Test α	.10	.05	.025	.01	.0
df = n-1					
1	3.078	6.314	12.71	31.82	63
2	1.886	2.920	4.303	6.965	9.
3	1.638	2.353	3.182	4.541	5.
4	1.533	2.132	2.776	3.747	4.
5	1.476	2.015	2.571	3.365	4.
6	1.440	1.943	2.447	3.143	3.
7	1.415	1.895	2.365	2.998	3.
8	1.397	1.860	2.306	2.896	3.
9	1.383	1.833	2,262	2.821	3.
→ 10	1.372	1.812	2.228	2.764	3.
11	1.363	1.796	2.201	2.718	3.
12	1.356	1.782	2.179	2.681	3.
13	1.350	1.771	2.160	2.650	3.
14	1.345	1.761	2.145	2.624	2.
15	1.341	1.753	2.131	2.602	2.
16	1.337	1.746	2.120	2.583	2.
17	1.333	1.740	2.110	2.567	2.
18	1.330	1.734	2.101	2.552	2.
19	1.328	1.729	2.093	2.539	2.
20	1.325	1.725	2.086	2.528	2.
21	1.323	1.721	2.080	2.518	2.
22	1.321	1.717	2.074	2.508	2.
23	1.319	1.714	2.069	2.500	2.
24	1.318	1.711	2.064	2.492	2.
25	1.316	1.708	2.060	2.485	2.
26	1.315	1.706	2.056	2.479	2.
27	1.314	1.703	2.052	2.473	2.
28	1.313	1.701	2.048	2.467	2.
29	1.311	1.699	2.045	2.462	2.
30	1.310	1.697	2.042	2.457	2.
, ∞	1.282	1.645	1.960	2.326	2.

$$100(1-\alpha)\%$$

Example: Suppose we wish to compute a 95% CI for true systolic BP. A random sample of n=10 is take with sample mean $\overline{X} = 121.2 \text{ mm Hg}$ and sample standard deviation s=11.1 mm Hg.

n=10, df=9 and $\alpha=0.05$

100(1-α)%

Example: Suppose we wish to compute a 95% CI for true systolic BP.

A random sample of n=10 is take with sample mean $\bar{X}=121.2 \text{ mm Hg}$

and sample standard deviation s=11.1 mm Hg.

The equation (when σ unknown) is $\overline{X} \pm t_{\frac{\alpha}{2},df} \frac{s}{\sqrt{n}}$, df=n-1. We find the critical t value in the table.

n=10, df=9 and $\alpha=0.05$

Down to row df=9 and over to column

CI=95% (or two side-test α =0.05,

or one side-test α =0.025).

$$121.2 \pm (2.262) \frac{11.1}{\sqrt{10}} \rightarrow 113.3 \ to \ 129.1$$
 mm Hg

Confidence Level	80%	90%	95%	98%	99%
Two-Sided Test α	.20	.10	.05	.02	.01
One-Sided Test α	.10	.05	.025	.01	.005
df					
1	3.078	6.314	12.71	31.82	63.66
2	1.886	2.920	4.303	6.965	9.925
3	1.638	2.353	3.182	4.541	5.841
4	1.533	2.132	2.776	3.747	4.604
5	1.476	2.015	2.571	3.365	4.032
6	1.440	1.943	2.447	3.143	3.707
7	1.415	1.895	2.365	2.998	3.499
8	1.397	1.860	2.306	2.896	3.355
→ 9	1.383	1.833	2.262	2.821	3.250
10	1.372	1.812	2.228	2.764	3.169

6.3 Confidence Intervals for One Sample, Dichotomous Outcome

Dichotomous when we have Yes/No or Heads/Tails or 1/0 outcomes.

Think of data

Yes	No	Yes	Yes	No	Yes	No
Heads	Tails	Heads	Heads	Tails	Heads	Tails
1	0	1	1	0	1	0

If we estimate the probability p of Yes or Heads or 1 as $\hat{p} = \frac{x}{n}$ where x is the number of Yes or Heads or 1.

We think of this as an average $\hat{p} = \frac{1+0+1+1+0+1+0}{7}$

If n is "large," then the central limit theorem applies.

The **Central Limit Theorem** (**CLT**) says, that if n is large, i.e. n > 30, then the average has an approximately normal distribution with mean μ and standard deviation σ/\sqrt{n} no matter what original distribution the data x_1, \ldots, x_n came from.

6.3 Confidence Intervals for One Sample, Dichotomous Outcome

Going through the same process as for μ we will find that:

$$\hat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}} \quad \text{or} \quad \hat{p} - z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

This CI only applies when n is large and $\min[n\hat{p}, n(1-\hat{p})] \ge 5$.

We use the z table as we did for CI for μ when n large.

No small *n* CI here. Do not use Student-*t*.

6.3 Confidence Intervals for One Sample, Dichotomous Outcome

Example: A sample of n=3532 hypertensive patients were examined and it was found that x=1219 were treated. Generate a 95% CI for p.

$$\hat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$$

$$\hat{p} = \frac{x}{n} = \frac{1219}{3532} = 0.345$$

$$0.345 \pm 1.96 \sqrt{\frac{0.345(1-0.345)}{3532}}$$
from table

$$0.345 \pm 0.016$$

$$0.320$$

A 95% CI for the probability a randomly selected person is treated.

We often have two independent samples,

 $x_1,...,x_{n_1}$ from population 1 with mean μ_1 and standard deviation σ_1 and $x_1,...,x_{n_2}$ from population 2 with mean μ_2 and standard deviation σ_2 .

Because of the central limit theorem, if n_1 and n_2 are "large," then \bar{X}_1 and \bar{X}_2 have normal distributions with means $\mu_{\bar{X}_1} = \mu_1$ and $\mu_{\bar{X}_2} = \mu_2$ and standard deviations $\sigma_{\bar{X}_1} = \sigma_1 / \sqrt{n_1}$ and $\sigma_{\bar{X}_2} = \sigma_2 / \sqrt{n_2}$.

We can go through the same process as for one sample. Therefore a 95% CI for μ_1 - μ_2 is

$$(\bar{X}_1 - \bar{X}_2) \pm t_{\frac{\alpha}{2}, df} S_P \sqrt{\frac{1}{n_1} + \frac{1}{n_2}} \text{ for } n_1, n_2 \leq 30$$

$$(\bar{X}_1 - \bar{X}_2) \pm z_{\underline{\alpha}} S_P \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$
 for $n_1, n_2 \ge 30$.

The **Central Limit Theorem** (**CLT**) says, that if n is large, i.e. n > 30, then the average has an approximately normal distribution with mean μ and standard deviation σ/\sqrt{n} no matter what original distribution the data x_1, \ldots, x_n came from.

$$S_P^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

Example: A sample of n=10 males and females had systolic blood pressure measured. The data are: males: $n_1=6$, $\bar{X}_1=117.5$ mm Hg $s_1=9.7$ mm Hg and females $n_2=4$, $\bar{X}_2=126.8$ mm Hg, $s_2=12$ mm Hg.

Generate a 95% CI for μ_1 - μ_2 .

$$\overline{X}_1 - \overline{X}_2 \pm t_{\frac{\alpha}{2}, df} S_P \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$$
, $df = n_1 + n_2 - 2$, $S_P = \sqrt{\frac{(n_1 - 1)(s_1)^2 + (n_2 - 1)(s_2)^2}{n_1 + n_2 - 2}}$

$$df = 6 + 4 - 2 = 8$$
 $S_P = \sqrt{\frac{(6-1)(9.7)^2 + (4-1)(12.1)^2}{6+4-2}} = 10.6 \text{ mm Hg}$

$$(117.5_1 - 126.8) \pm (2.306)(10.6) \sqrt{\frac{1}{6} + \frac{1}{4}} \longrightarrow -9.3 \pm 15.78 \text{ mm Hg} \longrightarrow -25.08 \text{ to } 6.48 \text{ mm Hg}$$
 from table

We often encounter two samples where there are matched pairs.

This is often the case for before vs. after, twins, couples, etc.

We subtract x_1 from sample 1 and x_2 from sample 2 for each pair.

The differences are labeled generically $d=x_1-x_2$ and so the sample of differences is d_1,\ldots,d_n . Because of the central limit theorem, \overline{X}_d has a mean of μ_d and standard deviation of σ_d/\sqrt{n} .

Once we have these differences we treat them exactly the same as we did in Section 6.2 CIs for One Sample, Continuous Outcome. _

 $\overline{X}_d \pm t_{\frac{\alpha}{2},df} \frac{S_d}{\sqrt{n}}$

Example: Difference in Systolic blood pressure between two visits.

$$\bar{X}_d \pm t_{\frac{\alpha}{2},df} \frac{s_d}{\sqrt{n}}$$
 Compute a 95% CI.

$$\bar{X}_d = \frac{-79.0}{15} - 5.3 \text{ mm Hg}$$

$$s_d = \sqrt{\frac{2296.95}{15-1}} = \sqrt{164.07} = 12.8 \text{ mm Hg}$$

-79.6

0.5

2296.95

$$-5.3 \pm (2.145) \frac{12.8}{\sqrt{15}} \longrightarrow -5.3 \pm 7.1 \longrightarrow -12.4 \ to \ 1.8 \ \text{mm Hg}$$

The CI for a difference in proportions, risk difference is:

$$(\hat{p}_1 - \hat{p}_2) \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}_1(1-\hat{p}_1)}{n_1} + \frac{\hat{p}_2(1-\hat{p}_2)}{n_2}}$$

We go through the same process.

$$RR = \frac{\hat{p}_1}{\hat{p}_2}$$

The CI for the natural log of relative risk, ln(RR) is:

$$ln(RR) \pm z_{\frac{\alpha}{2}} \sqrt{\frac{(n_1 - X_1)/X_1}{n_1} + \frac{(n_2 - X_2)/X_2}{n_2}}$$

CI for relative risk (RR) is:

exp(Lower Limit), exp(Upper Limit)

We go through the same process.

$$OR = \frac{\hat{p}_1 / (1 - \hat{p}_1)}{\hat{p}_2 / (1 - \hat{p}_2)}$$

CI for the natural log of odds ratio, ln(OR) is:

$$ln(OR) \pm z_{\frac{\alpha}{2}} \sqrt{\frac{1}{X_1} + \frac{1}{n_1 - X_1} + \frac{1}{X_2} + \frac{1}{n_2 - X_2}}$$

CI for odds ratio, *OR* is:

exp(Lower Limit), exp(Upper Limit)

We go through the same process.

Biostatistical Methods

6.7 Summary

Number of Groups, Outcome: Parameter	Confidence Interval, n<30	Confidence Interval, <i>n</i> ≥30
One sample, continuous: CI for μ	$\bar{X} \pm t_{\frac{\alpha}{2},df} \frac{s}{\sqrt{n}}$	$\bar{X} \pm z_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$
One sample, dichotomous: CI for p	(Not taught in this class.)	$\hat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
Two independent samples, continuous: CI for μ_1 - μ_2	$(\bar{X}_1 - \bar{X}_2) \pm t_{\frac{\alpha}{2}, df} S_P \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$	$(\bar{X}_1 - \bar{X}_2) \pm z_{\frac{\alpha}{2}} S_P \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}$
	1 2	$S_P = \sqrt{\frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}}$
	$df = n_1 + n_2 - 2$	
Two matched samples, continuous: CI for $\mu_d = \mu_1 - \mu_2$	$\overline{X}_d \pm t_{\frac{\alpha}{2},df} \frac{S_d}{\sqrt{n}}$	$\overline{X}_d \pm z_{\frac{\alpha}{2}} \frac{s_d}{\sqrt{n}}$
Two independent samples, dichotomous: CI for $RD=(p_1-p_2)$	(Not taught in this class.)	$(\hat{p}_1 - \hat{p}_2) \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}_1(1 - \hat{p}_1)}{n_1} + \frac{\hat{p}_2(1 - \hat{p}_2)}{n_2}}$
CI for $ln(RR)=ln(p_1/p_2)$	(Not taught in this class.)	$\ln(RR) \pm z_{\frac{\alpha}{2}} \sqrt{\frac{(n_1 - X_1) / X_1}{n_1} + \frac{(n_2 - X_2) / X_2}{n_2}}$
CI for $RR=p_1/p_2$	(Not taught in this class.)	exp(Lower Limit), exp(Upper Limit)
CI for $ln(OR) = ln([p_1/(1-p_1)]/[p_2/(1-p_2)])$	(Not taught in this class.)	$ln(OR) \pm z_{\frac{\alpha}{2}} \sqrt{\frac{1}{X_1} + \frac{1}{n_1 - X_1} + \frac{1}{X_2} + \frac{1}{n_2 - X_2}}$
CI for $OR=[p_1/(1-p_1)]/[p_2/(1-p_2)]$	(Not taught in this class.)	exp(Lower Limit), exp(Upper Limit)

Questions?

Homework 6

Read Chapter 6.

Problems # 1, 3, 5, 7