Chapter 5: The Role of Probability

Dr. Daniel B. Rowe **Professor of Computational Statistics Department of Mathematical and Statistical Sciences** Marquette University

Copyright D.B. Rowe

Probabilities are numbers that reflect the likelihood that a particular event occurs.

Statistical inference involves making generalizations or inferences about unknown population parameters based on sample statistics.

Parameters: Summary measures computed on populations. i.e. μ , σ^2 **Statistics:** Numerical summary measures computed on samples. i.e. \overline{X} , s^2

5.1 Sampling

Sampling Frame: A complete list or enumeration of the population.

Simple Random Sampling: A set of numbers is selected at random to determine the individuals to be included.

Systematic Sampling: Individuals selected at regular interval N/n. N is population size, n is desired sample size. i.e. very third or fifth selected. Might not be representative.

5.1 Sampling

Stratified Sampling: Split the population into nonoverlapping groups or strata then sample within each stratum. Instead of randomly from entire US population, sample proportionately from each state.

Convenience Sampling: Select individuals by any convenient contact. Select patients as they come in, not from all patients.

5.2 Basic Concepts

Probability is a number that reflects the likelihood that a particular event Will occur. Probabilities range from 0 to 1.

 $P(characteristic) = \frac{Number of persons with characteristic}{Total number of persons in the population (N)}$

	Age (years)						
	5	6	7	8	9	10	Total
Boys	432	379	501	410	420	418	2560
Girls	408	513	412	436	461	500	2730
Total	840	892	913	846	881	918	5290

$$P(boy) = \frac{2560}{5290} = 0.484$$

D.B. Rowe

Sometimes it is of interest to focus on a particular subset of the population.

What is the probability of selecting a 9-year-old girl from the subpopulation of girls?

			Age(years)			
	5	6	7	8	9	10	Total
Boys	432	379	501	410	420	418	2560
Girls	408	513	412	436	461	500	2730
Total	840	892	913	846	881	918	5290

$$P(9 - year - old \mid girls) = \frac{4}{27}$$

16.9% of girls are 9-years old.

D.B. Rowe

$\frac{461}{730} = 0.169$

Screening tests are often used in clinical practice. Results changes probs.

What is the probability of a male having prostate cancer?

	Biopsy Results		
	Prostate Cancer	No Prostate Cancer	Total
Total	28	92	120
Abbreviation: PSA, prostat	e-specific antigen.		

$$P(prostate \ cancer) = \frac{28}{120} = 0.233$$

D.B. Rowe

Screening tests are often used in clinical practice. Results changes probs.

What is the probability of a male having prostate cancer?

	Biopsy Results			
PSA Level	Prostate Cancer	No Prostate Cancer	Total	
Low	3	61	64	
Slightly to moderately elevated	13	28	41	
Highly elevated	12	3	15	
Total	28	92	120	
Abbreviation: PSA, prostate-specific antigen.				

$$P(\text{prostate cancer}) = \frac{28}{120} = 0.233$$
$$P(\text{prostate cancer} | \text{low PSA}) = \frac{3}{64} = 0.0$$

047

PSA = prostate-specific antigen

Screening tests are often used in clinical practice. Results changes probs.

What is the probability of a male having prostate cancer?

	Biopsy Results			
PSA Level	Prostate Cancer	No Prostate Cancer	Total	
Low	3	61	64	
Slightly to moderately elevated	13	28	41	
Highly elevated	12	3	15	
Total	28	92	120	

$$P(prostate \ cancer) = \frac{28}{120} = 0.233$$

$$P(prostate \ cancer \mid low \ PSA) = \frac{3}{64} = 0.047$$

$$P(prostate \ cancer \mid slight \ to \ moderate \ PSA) = \frac{13}{41} = 0.317$$

D.B. Rowe

)47

PSA = prostate-specific antigen

Screening tests are often used in clinical practice. Results changes probs.

What is the probability of a male having prostate cancer?

	Biopsy Results			
PSA Level	Prostate Cancer	No Prostate Cancer	Total	
Low	3	61	64	
Slightly to moderately elevated	13	28	41	
Highly elevated	12	3	15	
Total	28	92	120	

 $P(prostate \ cancer) = \frac{28}{120} = 0.233$ $P(prostate \ cancer \ | \ low \ PSA) = \frac{3}{64} = 0.047$ $P(prostate \ cancer \ | \ slight \ to \ moderate \ PSA) = \frac{13}{41} = 0.317$ $P(prostate \ cancer \ | \ highly \ elevated \ PSA) = \frac{12}{15} = 0.80$

D.B. Rowe

10

PSA = prostate-specific antigen

Biostatistical Methods

5.3 Conditional Probability

Sensitivity is also called the true positive fraction.

Specificity is also called the true negative fraction.

Sensitivity = True Positive Fraction = $P(screen \ positive | disease) = ----$

Specificity = True Negative Fraction = $P(screen negative | disease | free) = \frac{d}{1 - 1}$

False Positive Fraction = $P(screen \ positive | disease \ free) = \frac{b}{b+d}$ False Negative Fraction = $P(screen negative | disease) = \frac{c}{c}$ a+c

Disease present	Disease Free	Total
а	Ь	ə+b
с	d	c + d
ə + c	b + d	Ν

a + c

Biostatistical Methods

5.3 Conditional Probability

Consider the *N*=4810 pregnancies with blood screen & amniocentesis for likelihood of Down Syndrome.

Sensitivity = P(screen positive | affected fetus) = $\frac{9}{10}$ = 0.900 Specificity = P(screen negative | unaffected fetus) = $\frac{4449}{4800}$ = 0.927 FP Fraction = P(screen positive | unaffected fetus) = $\frac{351}{4800}$ = 0.073 FN Fraction = P(screen negative | affected fetus) = $\frac{1}{10}$ = 0.100

Affected Fetus	Unaffected Fetus	Total
9	351	360
1	4449	4450
10	4800	4810

Positive

Negative

Total

5.4 Independence

Two events are **independent** if the probability of one is not affected by the occurrence or nonoccurrence of the other.

$$P(A \mid B) = P(A)$$
 or $P(B \mid A) = P(B)$

D.B. Rowe

$$P(A | B) = P(low \ risk | \ prostate \ cancer) = \frac{10}{20} = 0.50$$

$$P(A) = P(low \ risk) = \frac{60}{120} = 0.50$$
A and B are Independent

Biopsy		
rostate Cancer	No Prostate Cancer	Total
10	50	60
6	30	36
4	20	24
20	100	120

5.5 Bayes Theorem

Bayes Theorem is a probability rule to compute conditional probabilities. $P(A \mid B) = \frac{P(B \mid A)P(A)}{P(B)}$

Example: Patient exhibiting symptoms of rare disease.

$$P(disease \mid screen \ positive) = \frac{P(screen \ positive \mid disease)P(disease)}{P(screen \ positive)}$$

$$P(disease) = 0.002$$

$$P(screen \ positive \mid disease) = 0.85$$

$$P(disease \mid screen \ positive) = \frac{(0.3)}{P(screen \ positive)}$$

D.B. Rowe

$\frac{(.85)(0.002)}{(0.08)} = 0.021$

14

5.6 Probability Models – Binomial Distribution

Let's assume we are flipping a coin twice. H=Head on flip, T=Tail on flip

The probability of heads on any given flip is p = P(H). The probability of tails (not heads) on any given flip is q = (1-p). Independent events Then P(HT)=P(H)P(T) Similarly P(TH)=P(T)P(H)= (1-p)p.=p(1-p).

Let x = # of heads in two flips of a coin. P(x=1) = P(HT) + P(TH) = p(1-p) + (1-p)p = 2p(1-p).Consider both ways 2 ways to get one H and one T 2 ways to get x=1 heads

D.B. Rowe

P(H)+P(T)=1

Independent events

5.6 Probability Models – Binomial Distribution

An experiment with only two outcomes is called a Binomial experiment. Call one outcome *Success* and the other *Failure*.

Each performance of experiment is called a trial and are independent.

$$P(x \text{ successes}) = \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}$$

n = number of trials or times we repeat the experiment. x = the number of successes out of *n* trials. p = the probability of success on an individual trial.

Only for Binomial

$\mu = np$ $\sigma^2 = np(1-p)$

$$\binom{n}{x} = \frac{n!}{x!(n-x)!}$$

5.6 Probability Models – Binomial Distribution

Example: Medication effectiveness.

P(*medication effective*)=*p*=0.80

What is the probability that it works on x=7 out of n=10?

$$P(7 \ successes) = \frac{10!}{7!(10-7)!} 0.80^7 (1-0.80)^{10-7}$$

$$P(7 \ successes) = \frac{10 \cdot 9 \cdot 8 \cdot 7!}{7! 3 \cdot 2 \cdot 1} 0.80^7 0.20^3$$

 $P(7 \ successes) = 120(0.2097)(0.008)$

 $P(7 \ successes) = 0.2013$

x = the number of successes out of *n* trials.

D.B. Rowe

 $P(x \text{ successes}) = \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x}$

n = number of trials or times we repeat the experiment. p = the probability of success on an individual trial.

Questions?

Homework 5 Part I

Read Chapter 5.

Problems # 1*, 4

* What is the standard deviation σ of hyperlipidema?

