Chapter 5: The Role of Probability

Dr. Daniel B. Rowe
Professor of Computational Statistics Department of Mathematical and Statistical Sciences
Marquette University

Probability

Probabilities are numbers that reflect the likelihood that a particular event occurs.

Statistical inference involves making generalizations or inferences about unknown population parameters based on sample statistics.

Parameters: Summary measures computed on populations. i.e. μ, σ^{2} Statistics: Numerical summary measures computed on samples. i.e. \bar{X}, s^{2}

5.1 Sampling

Sampling Frame: A complete list or enumeration of the population.

Simple Random Sampling: A set of numbers is selected at random to determine the individuals to be included.

Systematic Sampling: Individuals selected at regular interval N / n. N is population size, n is desired sample size.
i.e. very third or fifth selected. Might not be representative.

5.1 Sampling

Stratified Sampling: Split the population into nonoverlapping groups or strata then sample within each stratum.
Instead of randomly from entire US population, sample proportionately from each state.

Convenience Sampling: Select individuals by any convenient contact. Select patients as they come in, not from all patients.

5.2 Basic Concepts

Probability is a number that reflects the likelihood that a particular event Will occur. Probabilities range from 0 to 1 .

$$
P(\text { characteristic })=\frac{\text { Number of persons with characteristic }}{\text { Total number of persons in the population }(N)}
$$

	Age (years)						
	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	Total
Boys	432	379	501	410	420	418	2560
Girls	408	513	412	436	461	500	2730
Total	840	892	913	846	881	918	5290

$$
P(b o y)=\frac{2560}{5290}=0.484
$$

5.3 Conditional Probability

Sometimes it is of interest to focus on a particular subset of the population.

What is the probability of selecting a 9-year-old girl from the subpopulation of girls?

	Age (years)						
	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	$\mathbf{1 0}$	Total
Boys	432	379	501	410	420	418	2560
Girls	408	513	412	436	461	500	2730
Total	840	892	913	846	881	918	5290

$P(9-$ year - old \mid girls $)=\frac{461}{2730}=0.169$
16.9% of girls are 9 -years old.

5.3 Conditional Probability

Screening tests are often used in clinical practice. Results changes probs.

What is the probability of a male having prostate cancer?

5.3 Conditional Probability

Screening tests are often used in clinical practice. Results changes probs.

What is the probability of a male having prostate cancer?

Psatevel	Bioss Results		Toal	$\begin{aligned} & P(\text { prostate cancer })=\frac{28}{120}=0.233 \\ & P(\text { prostate cancer } \mid \text { low } P S A)=\frac{3}{64}=0.047 \end{aligned}$
	Prostate Cancer			
Lown	3	${ }^{6}$	${ }^{64}$	
	${ }^{13}$	${ }^{28}$	41	
Highty	12	3	15	
Tobal	${ }^{28}$	92	120	

5.3 Conditional Probability

Screening tests are often used in clinical practice. Results changes probs.

What is the probability of a male having prostate cancer?

5.3 Conditional Probability

Screening tests are often used in clinical practice. Results changes probs.

What is the probability of a male having prostate cancer?

Psa Level	sauts		Toal	$P(\text { prostate cancer })=\frac{28}{120}=0.233$
	Prostate	$\begin{gathered} \text { Protate } \\ \text { Prosat } \end{gathered}$		$P(\text { prostate cancer } \mid \text { low } P S A)=\underline{3}=0.047$
Low	3	61	${ }^{6}$	64
	13	${ }^{28}$	41	$P($ prostate cancer \mid slight to moderate $P S A)=\frac{13}{41}=0.317$
Highe devated	12	3	15	12
Total	28	92	${ }^{120}$	15

5.3 Conditional Probability

Sensitivity is also called the true positive fraction.

Specificity is also called the true negative fraction.

	Disease present	Disease Free	Total
Screen positive Screen negative	c	b	$a+b$
Total	$a+c$	$b+d$	$c+d$

Sensitivity $=$ True Positive Fraction $=P($ screen positive \mid disease $)=\frac{a}{a+c}$
Specificity $=$ True Negative Fraction $=P($ screen negative \mid disease free $)=\frac{d}{b+d}$
False Positive Fraction $=P($ screen positive \mid disease free $)=\frac{b}{b+d}$
False Negative Fraction $=P($ screen negative \mid disease $)=\frac{c}{a+c}$

5.3 Conditional Probability

Consider the $N=4810$ pregnancies with blood screen \& amniocentesis for likelihood of Down Syndrome.

	Affected Fetus	Unaffected Fetus	Total
Positive	9	351	360
Negative	1	4449	4450
Total	10	4800	4810

Sensitivity $=P($ screen positive \mid affected fetus $)=\frac{9}{10}=0.900$
Specificity $=P($ screen negative \mid unaffected fetus $)=\frac{4449}{4800}=0.927$
$F P$ Fraction $=P($ screen positive \mid unaffected fetus $)=\frac{351}{4800}=0.073$
$F N$ Fraction $=P($ screen negative \mid affected fetus $)=\frac{1}{10}=0.100$

5.4 Independence

Two events are independent if the probability of one is not affected by the occurrence or nonoccurrence of the other.

| | Biopsy Results | |
| :--- | :---: | :---: | :---: |
| No
 Prostate Prostate
 Cancer Prostate
 Cancer Total
 Low 10 50
 Moderate 6 30
 High 4 20
 Total 20 100 $\quad 120$ | | |

A=Low Risk
B= Prostate Cancer
$P(A \mid B)=P($ low risk \mid prostate cancer $)=\frac{10}{20}=0.50$
$P(A)=P($ low risk $)=\frac{60}{120}=0.50$

5.5 Bayes Theorem

Bayes Theorem is a probability rule to compute conditional probabilities.

$$
P(A \mid B)=\frac{P(B \mid A) P(A)}{P(B)}
$$

Example: Patient exhibiting symptoms of rare disease.

$$
P(\text { disease } \mid \text { screen positive })=\frac{P(\text { screen positive } \mid \text { disease }) P(\text { disease })}{P(\text { screen positive })}
$$

$$
P(\text { disease })=0.002
$$

$$
\left.\begin{array}{l}
P(\text { screen positive } \mid \text { disease })=0.85 \\
P(\text { screen positive })=0.08
\end{array}\right] \rightarrow P(\text { disease } \mid \text { screen positive })=\frac{(0.85)(0.002)}{(0.08)}=0.021
$$

5.6 Probability Models - Binomial Distribution

$$
P(H)+P(T)=1
$$

Let's assume we are flipping a coin twice.
$H=$ Head on flip, $T=$ Tail on flip
The probability of heads on any given flip is $p=P(H)$.
The probability of tails (not heads) on any given flip is $q=(1-p)$.
Then $P(H T)=P(H) P(T) \quad$ Similarly $\quad P(T H)=P(T) P(H)$

$$
=p(1-p) . \quad=(1-p) p
$$

Let $x=$ \# of heads in two flips of a coin.

$$
\begin{aligned}
P(x=1) & =P(H T)+P(T H) \\
& =p(1-p)+(1-p) p=2 \overleftarrow{p(1-p) .}
\end{aligned}
$$

5.6 Probability Models - Binomial Distribution

An experiment with only two outcomes is called a Binomial experiment.
Call one outcome Success and the other Failure.
Each performance of experiment is called a trial and are independent.

$$
P(x \text { successes })=\frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x}
$$

$$
\begin{aligned}
& \text { Only for Binomial } \\
& \mu=n p \\
& \sigma^{2}=n p(1-p)
\end{aligned}
$$

$n=$ number of trials or times we repeat the experiment.
$x=$ the number of successes out of n trials.
$p=$ the probability of success on an individual trial.
$\binom{n}{x}=\frac{n!}{x!(n-x)!}$

5.6 Probability Models - Binomial Distribution

Example: Medication effectiveness.

P (medication effective) $=p=0.80$
What is the probability that it works on $x=7$ out of $n=10$?

$$
\begin{aligned}
& P(7 \text { successes })=\frac{10!}{7!(10-7)!} 0.80^{7}(1-0.80)^{10-7} \\
& P(7 \text { successes })=\frac{10 \cdot 9 \cdot 8 \cdot 7!}{7!3 \cdot 2 \cdot 1} 0.80^{7} 0.20^{3} \\
& P(7 \text { successes })=120(0.2097)(0.008) \\
& P(7 \text { successes })=0.2013
\end{aligned}
$$

$P(x$ successes $)=\frac{n!}{x!(n-x)!} p^{x}(1-p)^{n-x}$
$n=$ number of trials or times we repeat the experiment.
$x=$ the number of successes out of n trials.
$p=$ the probability of success on an individual trial.

Questions?

Homework 5 Part I

Read Chapter 5.

Problems \# 1*, 4

* What is the standard deviation σ of hyperlipidema?

