Chapter 4: Summarizing Data Collected in the Sample

Dr. Daniel B. Rowe
Professor of Computational Statistics Department of Mathematical and Statistical Sciences
Marquette University

Data

The population is the collection of all individuals about whom we wish to make generalizations.

Example: We wish to assess the prevalence of CVD among all adults aged 30 to 75 in the US.

The sample is a subset of individuals from the population.

Example: A researcher randomly selects 1000 adults aged 30 to 75 in the US to assess the prevalence of CVD.

Data

Dichotomous variables have only two possible responses. Yes/No

Example: Exposure to a risk factor such as smoking can be coded as yes or no. (Sometimes 1/0).

Ordinal variables have more than two possible ordered responses

Example: Symptom severity of minimal, moderate, and severe.

Data

Categorical variables sometimes called nominal variables are similar to ordinal variables except that the responses are unordered.

Example: Race/ethnicity.

Continuous variables take on an unlimited number of responses between defined minimum and maximum values.

Examples: Systolic blood pressure, diastolic blood pressure, total cholesterol level, CD4 count, platelet count, age, height, and weight.

Data

Statistics: Numerical summary measures computed on samples.
Example: The mean blood pressure among a random sample of 1000 adults aged 30 to 75 in the US.

Parameters: Summary measures computed on populations.
Example: The mean blood pressure among all adults aged 30 to 75 in the US population.

4.1 Dichotomous Variables

Example:

	\boldsymbol{n}	Number on Treatment	Relative Frequency (\%)
Males	1622	611	37.7
Females	1910	608	31.8
Total	3532	1219	34.5
	Description		

R Code:

gender <- c("male", "female")
Relat_Freq <- c(37.7, 34.5)
barplot(Relat_Freq, names.arg=gender, main="Bar Graph of Relative Frequency in \%")

4.2 Ordinal and Categorical Variables

Example:

Stage I Hypertension

Stage Il Hypertension

Blood Pressure

4.3 Continuous Variables

Example 1: Small Numbers

Data values: 1,2,2,3,4
Sample Mean

4.3 Continuous Variables

Example 1: Small Numbers

Data values: 1,2,2,3,4
Sample Median

```
median \(=\) middle value
median \(=2\)
```

Order data from smallest to largest. If the number of data values is odd, take the middle value as the median. If the number of data values is even, take the average of the middle two.

4.3 Continuous Variables

Example 1: Small Numbers
Data values: 1,2,2,3,4
Sample Mode

$$
\begin{aligned}
& \text { mode }=\text { most frequent value } \\
& \text { mode }=2
\end{aligned}
$$

Order data from smallest to largest. Count how many time each value occurs. Take the one with the highest count.

4.3 Continuous Variables

Example 1: Small Numbers
Data values: 1,2,2,3,4
Sample Variance

X	\bar{X}	$X-\bar{X}$	$(X-\bar{X})^{2}$
1	2.4	-1.4	1.96
2	2.4	-0.4	0.16
2	2.4	-0.4	0.16
3	2.4	0.6	0.36
4	2.4	1.6	2.56
12			5.20

$$
\begin{aligned}
s^{2} & =\frac{1}{n-1} \sum(X-\bar{X})^{2} \\
s^{2} & =\frac{1}{5-1}\left[(1-2.4)^{2}+(2-2.4)^{2}+(2-2.4)^{2}+(3-2.4)^{2}+(4-2.4)^{2}\right] \\
s^{2} & =\frac{5.2}{4}=1.3 \\
s & =\sqrt{s^{2}}=\sqrt{1.3}=1.14
\end{aligned}
$$

4.3 Continuous Variables

Example 1: Small Numbers
Data values: 1,2,2,3,4
Sample Variance

$$
\begin{aligned}
& s^{2}=\frac{1}{n-1}\left[\sum X^{2}-\frac{1}{n}\left(\sum X\right)^{2}\right] \\
& s^{2}=\frac{1}{5-1}\left[34-\frac{12^{2}}{5}\right] \\
& s^{2}=\frac{5.2}{4}=1.3 \\
& s=\sqrt{s^{2}}=\sqrt{1.3}=1.14
\end{aligned}
$$

X	X^{2}
1	1
2	4
3	9
3	9
4	16
	12

```
x<- c(1,2,2,3,4)
n <- length(x)
x2=x*x
sum(x)
sum(x2)
s2<- (sum(x2)-sum(x)^2/n)/(n-1)
s2
s <- sqrt(s2)
S
```


4.3 Continuous Variables

Example 1: Small Numbers

Data values: 1,2,3,4,5 Box-Whisker Plot

5-number summary

1. $L=$ minimum value
2. $Q_{1}=$ data value where 25% are smaller
3. $Q_{2}=$ median (where 50% are smaller)
4. $Q_{3}=$ data value where 75% are smaller
5. $H=$ maximum value

$x<-c(1,2,3,4,5)$
boxplot(x)
quantile(x, probs $=c(0,0.25,0.50,0.75,1))$

4.3 Continuous Variables

$Q_{1}=$ data value where 25% are smaller $Q_{3}=$ data value where 75% are

Inter Quartile Range

$I Q R=Q_{3}-Q_{1}$

Outliers

are below $\quad Q_{1}-1.5 \mathrm{IQR}$
or above $\quad Q_{1}+1.5$ IQR

No outliers, use the mean and standard deviation to summarize the sample. Outliers, use the median and $I Q R$ to summarize the sample.

4.3 Continuous Variables

Example 1: Diastolic Blood Pressures

Data values: 62,63,64,67,70,72,76,77,81,81 Sample Mean

[^0]
4.3 Continuous Variables

Example 1: Diastolic Blood Pressures

Data values: 62,63,64,67,70,72,76,77,81,81 Sample Median

median $=$ middle value
median $=71$

Order data from smallest to largest. If the number of data values is odd, take the middle value as the median. If the number of data values is even, take the average of the middle two.

4.3 Continuous Variables

Example 1: Diastolic Blood Pressures

Data values: 62,63,64,67,70,72,76,77,81,81 Sample Mode

$$
\begin{aligned}
& \text { mode }=\text { most frequent value } \\
& \text { mode }=81
\end{aligned}
$$

Order data from smallest to largest. Count how many time each value occurs. Take the one with the highest count.

4.3 Continuous Variables

Example 1: Diastolic Blood Pressures
Data values: 62,63,64,67,70,72,76,77,81,81 Sample Variance

$$
\begin{aligned}
& s^{2}=\frac{1}{n-1} \sum(X-\bar{X})^{2} \\
& s^{2}=\frac{1}{10-1}\left[(62-71.3)^{2}+\ldots+(81-71.3)^{2}\right] \\
& s^{2}=\frac{472.9}{9}=52.5 \\
& s=\sqrt{s^{2}}=\sqrt{52.5}=7.24
\end{aligned}
$$

```
x<-c(62,63,64,67,70,72,76,77, 81, 81)
var(x)
Sd(x)
```


4.3 Continuous Variables

Example 1: Diastolic Blood Pressures
Data values: 62,63,64,67,70,72,76,77,81,81 Sample Variance

$$
\begin{aligned}
s^{2} & =\frac{1}{n-1}\left[\sum X^{2}-\frac{1}{n}\left(\sum X\right)^{2}\right] \\
s^{2} & =\frac{1}{10-1}\left[51309-\frac{713^{2}}{10}\right] \\
s^{2} & =\frac{472.9}{9}=52.5 \\
s & =\sqrt{s^{2}}=\sqrt{52.5}=7.24
\end{aligned}
$$

```
x<-c(62,63,64,67,70,72,76,77, 81, 81)
n <- length(x)
x2=x*x
sum(x)
sum(x2)
s2 <- (sum(x2)-sum(x)^2/n)/(n-1)
S2
s <- sqrt(s2)
S
```


4.3 Continuous Variables

Example 1: Diastolic Blood Pressures

 Data values: 62,63,64,67,70,72,76,77,81 Box-Whisker Plot
5-number summary

1. $L=$ minimum value
2. $Q_{1}=$ data value where 25% are smaller
3. $Q_{2}=$ median (where 50% are smaller)
4. $Q_{3}=$ data value where 75% are smaller
5. $H=$ maximum value

$$
I Q R=Q_{3}-Q_{1}
$$

$x<-c(62,63,64,67,70,72,76,77,81,81)$ boxplot(x)
quantile(x, probs $=c(0,0.25,0.50,0.75,1))$

Questions?

Homework 4
Read Chapter 4.
Problems \# 2, 4, 6, 7, 9

[^0]: $x<-c(62,63,64,67,70,72,76,77,81,81)$ $\operatorname{sum}(x)$
 mean(x)

