Chapter 3: Quantifying the Extent of Disease

Dr. Daniel B. Rowe **Professor of Computational Statistics Department of Mathematical and Statistical Sciences** Marquette University

Copyright D.B. Rowe

Studies

When a health-related agency report a disease, they use certain terms.

The objective of this chapter is to review and understand these terms.

https://phil.cdc.gov/Details.aspx?pid=23311

https://iphce.org/acadp_listings/public-health-image-library-phil-database/

D.B. Rowe

Prevalence refers to the proportion of participants with disease at a particular point in time.

An estimate of the prevalence of disease at baseline is

Number of persons with disease Point Prevalence = -Number of persons examined at baseline

Example 3.1 Computing Prevalence of Cardiovascular Disease (CVD)

TABLE 3-1 Men and Women with Diagnosed CVD)	
	Free o	of CVD	Histo	ry of CVD)	Total	
Men	15	548		244		1792	
Women	18	872		135		2007	
Total	34	420		379		3799	

Prevalence =

Prevalence of CVD = $379/3799 = 0.0998 \rightarrow 9.98\%$

Prevalence of CVD in Men = $244/1792 = 0.1362 \rightarrow 13.62\%$

Prevalence of CVD in Women = $135/2007 = 0.0673 \rightarrow 6.73\%$

D.B. Rowe

with disease

A question, we may like to ask is

What are the risk factors behind the disease?

In other words, what are the characteristics of the population within which the prevalence of the disease is high?

Data on H1N1 outbreak in La Gloria, Mexico: n = 1575 villagers (out of 2155) were surveyed to determine if they had influenza-like illness (ILI) between 2/15/09 and 4/27/09.

Age	No ILI	ILI	Total
≤ 44 years	703	522	1225
> 44 years	256	94	350
Total	959	616	1575

Age	No ILI	ILI	Total
≤ 44 years	703	522	1225
> 44 years	256	94	350
Total	959	616	1575

Prevalence =

Prevalence of ILI = 616/1575 = 0.3911 \rightarrow 39.11% Prevalence of ILI in \leq 44 = 522/1225 = 0.4261 \rightarrow 42.61% Prevalence of ILI in > 44 = 94/350 = 0.2686 \rightarrow 26.86%

influenza-like illness

$= \frac{\# \text{ with disease}}{\# \text{ examined at baseline}}$

Incidence reflects the likelihood of developing disease among a group of participants free of the disease who are at risk of developing the disease over a specified observation period.

Number of persons who develop disease during a specified period Cumulative Incidence = Number of persons at risk at baseline

Incidence Rate = $\frac{\text{Number of persons who develop disease during a specified period}}{\frac{1}{1000}}$ Sum of the lengths of time during which persons are disease-free

Incidence of CVD?

D.B. Rowe

Cardiovascular Disease

9

Incidence Rate (IR) uses all available information and is computed by taking the ratio of the number of new cases to the total follow-up time.

Number of persons who develop disease during a specified period Incidence Rate = -Sum of the lengths of time during which persons are disease-free


```
Incidence of CVD?
```

```
Incidence Rate of CVD

IR = 3/(6+9+10+2+7+5)

IR = 3/39

IR = 0.0769
```

7.7 per 100 person-years

Cardiovascular Disease

/D				
			DTH	
		DTH		
	(Drop Out)			
6	7	8	9	10

Computing incidence

Develop		Total Follow-Up
	CVD	lime (years)
Men	190	9984
Women	119	12153
Total	309	22137

Incidence Rate of CVD in Men = 190/9984 = 0.01903

= 190 per 10,000 person-years

Incidence Rate of CVD in Women = 119/12153 = 0.00979

= 98 per 10,000 person-years

Cardiovascular Disease

12

Computing incidence

Incidence Rate = —

			Sui
	Developed ILI	Total Follow-Up Time (years)	whi
≤ 44 years	522	20,064	
> 44 years	94	3,514	
Total	616	23,578	

Incidence Rate of ILI in $\leq 44 = 522/20064 = 0.0260$

= 260 per 10,000 person-years

Incidence Rate of ILI in > 44 = 94/3514 = 0.0268

= 268 per 10,000 person-years

influenza-like illness

Number of persons who develop disease during a specified period Sum of the lengths of time during ich persons are disease-free

Risk Difference (excess risk)

 $RD = \text{Prevalence}_{\text{exposed}} - \text{Prevalence}_{\text{unexposed}}$ $RD = \text{Cumulative Incidence}_{\text{exposed}} - \text{Cumulative Incidence}_{\text{unexposed}}$ $RD = \text{Incidence Rate}_{\text{exposed}} - \text{Incidence Rate}_{\text{unexposed}}$

Prevalence = -

Risk Difference of prevalent CVD in smokers versus nonsmokers

 $RD = Prevalence_{smokers} - Prevalence_{nonsmokers}$

TABLE 3-2 Smoking and Diagnosed CVD					
	Free of CVD	History of CVD	Total		
Nonsmoker	2757	298	3055		
Current smoker	663	81	744		
Total	3420	379	3799		

Prevalence =

RD = 81/744 - 298/3055 = 0.1089 - 0.0975 = 0.0114

Cardiovascular Disease

Population Attributable Risk (PAR) of CVD in Smokers vs. Nonsmokers

Prevalence_{overall} – Prevalence_{nonsmokers} PAR =Prevalence_{overall}

TABLE 3–2 Smoking and Diagnosed CVD					
	Free of CVD	History of CVD	Total		
Nonsmoker	2757	298	3055		
Current smoker	663	81	744		
Total	3420	379	3799		

Prevalence =

PAR = (0.0998 - 0.0975) / 0.0998 = 0.023 = 2.3%

Cardiovascular Disease

Risk Difference (RD) of history of ILI in males and females in La Gloria

 $RD = Prevalence_{Females} - Prevalence_{Males}$

	No ILI	ILI	Total
Males	517	260	777
Females	442	356	798
Total	959	616	1575

Prevalence =

= 356/798 - 260/777 = 0.4461 - 0.3346 = 0.1115

influenza-like illness

Biostatistical Methods

3.4 Comparing Extent of Disease Between Groups

Relative Risk (RR)

 $RR = \frac{\text{Prevalence}_{\text{exposed}}}{\text{Prevalence}_{\text{unexposed}}}$

Prevalence = -

Relative Risk (RR) of CVD in smokers versus nonsmokers

D.B. Rowe

with disease

Relative Risk (RR) of ILI in females vs. males

$$RR = \frac{\text{Prevalence}_{females}}{\text{Prevalence}_{males}} = \frac{356 / 798}{260 / 777} = \frac{0.4461}{0.3346} = 1.33$$

	No ILI	ILI	Total
Males	517	260	777
Females	442	356	798
Total	959	616	1575

Prevalence =

D.B. Rowe

influenza-like illness

Odds Ratio (OR) is computed as a measure of effect.

Prevalence =

D.B. Rowe

with disease

Odds Ratio of CVD in hypertensives vs. non-hypertensives.

$$OR = \frac{\frac{181/840}{(1-181/840)}}{\frac{188/2942}{(1-188/2942)}} = \frac{\frac{0.275}{0.725}}{\frac{0.068}{0.932}} = 4.04$$

TABLE 3–5 Prev Prevalent CVD	valent Hypert	ension and	
	No CVD	CVD	Total
No hypertension	2754	188	2942
Hypertension	659	181	840
Total	3413	369	3782

Prevalence =

$$OR = \frac{1}{\text{Prevalence}}$$

D.B. Rowe

with disease

Prevalence_{exposed} $(1 - \text{Prevalence}_{\text{exposed}})$ ce_{unexposed} $(1 - \text{Prevalence}_{\text{unexposed}})$

Odds Ratio of ILI in younger group vs. older group.

Age	No ILI	ILI	Total
≤ 44 years	703	522	1225
> 44 years	256	94	350
Total	959	616	1575

$$OR = \frac{\frac{522}{1225}}{\frac{94}{350}} = \frac{0.426}{0.269} = \frac{0.426}{0.269} = 2.02$$

Prevalence =

$$OR = \frac{1}{\text{Prevalence}}$$

D.B. Rowe

influenza-like illness

with disease

Prevalence_{exposed} $(1 - \text{Prevalence}_{\text{exposed}})$ ceunexposed $(1 - \text{Prevalence}_{\text{unexposed}})$

Relative Risks and Odds Ratios

Not possible to estimate relative risk in case-control studies.

Possible to estimate odds ratio because of its invariance property.

Invariance Property of Odds Ratios

Case-control study to assess association between smoking and cancer.

TABLE 3–6 Smoking and Cancer				
	Cancer (Case)	No Cancer (Control)	Total	
Smoker	40	29	69	
Nonsmoker	10	21	31	
Total	50	50	100	

D.B. Rowe

Invariance Property of Odds Ratios

Odds ratio for cancer in smokers versus nonsmokers

= (40/29) / (10/21) = 2.90

Odds of smoking in patients with cancer versus not

= (40/10) / (29/21) = 2.90(!)

TABLE 3-6	Smoking and C	
	Cancer	
	(Case)	
Smoker	40	
Nonsmoker	10	
Total	50	

Cancer No Cancer (Control) Total 29 69 21 31 50 100

Questions?

27

Homework 3

Read Chapter 3.

Problems # 1, 5, 7, 13

