Chapter 10 Problem Solving # 2 (Wilcoxon Sign Rank Test), 4 (Kruskal-Wallis Test)

10.5 Summary

Sign Test: $\delta = 0$, $\delta = MD_1 - MD_2$	H ₁ : $\delta > 0$. If difference < 0,+. If difference = 0, 0. If difference > 0,						
(Paired)	H ₁ : $\delta < 0$. If difference $< 0, -$. If difference $= 0, 0$. If difference $> 0, +$.						
	x = number of +'s. Use Table 6.						
Wilcoxon Signed Rank Test: $\delta=0$,	W+ = sum of positive ranks						
$\delta = MD_1 - MD_2$ (Paired)	W-= sum of negative ranks						
	$W = \min(W^+, W^-)$						
Kruskal-Wallis Test:	$12 k R^2$						
$MD_1 = \ldots = MD_k$	$H = \frac{12}{N} \sum \frac{K_j}{N} - 3(N+1)$						
(ANOVA)	$N(N+1) \sum_{j=1}^{n} n_j$						

Sign Test Table (Tab	le 6)				Wilcoxon Signed Ra	nk Table	e (Table 7)		
Two-Sided Test α	.10	.05	.02	.01	Two-Sided Test α	.10	.05	.02	.01
One-Sided Test $lpha$.05	.025	.01	.005	One-Sided Test α	.05	.025	.01	.005
п					n				
1					5	1			
2					6	2	1		
3					7	4	2	0	
4					8	6	4	2	0
5	0				9	8	6	3	2
6	0	0			10	11	8	5	3
7	0	0	0		11	14	11	7	5
8	1	0	0	0	12	17	14	10	7
9	1	1	0	0	13	21	17	13	10
10	1	1	0	0	14	26	21	16	13
11	2	1	1	0	15	30	25	20	16
12	2	2	1	1	16	36	30	24	19
13	3	2	1	1	17	41	35	28	23
16	3	2	2	1	18	47	40	33	28
14	2	2	2	2	19	54	46	38	32
15	5	2	2	2	20	60	52	43	37
10	4	3	2	2	21	68	59	49	43
17	4	4	3	2	22	75	66	56	49
18	5	4	3	3	23	83	73	62	55
19	5	4	4	3	24	92	81	69	61
20	5	5	4	3	25	101	90	77	68
21	6	5	4	4	26	110	98	85	76
22	6	5	5	4	27	120	107	93	84
23	7	6	5	4	28	130	117	102	92
24	7	6	5	5	29	141	127	111	100
25	7	7	6	5	30	152	137	120	109

Chapter 10 Problem Solving # 2 (Wilcoxon Sign Rank Test), 4 (Kruskal-Wallis Test)

Kruskal-Wallis Test Table (Table 8)

Th	ree gro	ups				Four groups				
n ₁	n ₂	n ₃	<i>α</i> = .05	<i>α</i> = .01	n ₁	n ₂	n ₃	n ₄	$\alpha = .05$	<i>α</i> = .01
2	2	2			2	2	1	1		
3	2	1			2	2	2	1	5.679	
3	2	2	4.714		2	2	2	2	6.167	6.667
3	3	1	5.143		3	1	1	1		
3	3	2	5.361		3	2	1	1		
3	3	3	5.600	7.200	3	2	2	1	5.833	
4	2	1			3	2	2	2	6.333	7.133
4	2	2	5.333		3	3	1	1	6.333	
4	3	1	5.208		3	3	2	1	6.244	7.200
4	3	2	5.444	6.444	3	3	2	2	6.527	7.636
4	3	3	5.791	6.745	3	3	3	1	6.600	7.400
4	4	1	4.967	6.667	3	3	3	2	6.727	8.015
4	4	2	5.455	7.036	3	3	3	3	7.000	8.538
4	4	3	5.598	7.144	4	1	1	1		
4	4	4	5.692	7.654	4	2	1	1	5.833	
5	2	1	5.000		4	2	2	1	6.133	7.000
5	2	2	5.160	6.533	4	2	2	2	6.545	7.391
5	3	1	4.960		4	3	1	1	6.178	7.067
5	3	2	5.251	6.909	4	3	2	1	6.309	7.455
5	3	3	5.648	7.079	4	3	2	2	6.621	7.871
5	4	1	4.985	6.955	4	3	3	1	6.545	7.758
5	4	2	5.273	7.205	4	3	3	2	6.795	8.333
5	4	3	5.656	7.445	4	3	3	3	6.984	8.659
5	4	4	5.657	7.760	4	4	1	1	5.945	7.909
5	5	1	5.127	7.309	4	4	2	1	6.386	7.909
5	5	2	5.338	7.338	4	4	2	2	6.731	8.346
5	5	3	5.705	7.578	4	4	3	1	6.635	8.231
5	5	4	5.666	7.823	4	4	3	2	6.874	8.621
5	5	5	5.780	8.000	4	4	3	3	7.038	8.876
6	1	1			4	4	4	1	6.725	8.588
6	2	1	4.822		4	4	4	2	6.957	8.871
6	2	2	5.345	6.655	4	4	4	3	7.142	9.075
6	3	1	4.855	6.873	4	4	4	4	7.235	9.287

Continued ...

Chapter 10 Problem Solving # 2 (Wilcoxon Sign Rank Test), 4 (Kruskal-Wallis Test)

10.6 Practice Problems

2. Using the data in Problem 1, assess whether there is a significant reduction in the number of sick days taken after completing the wellness program using the Wilcoxon Signed Rank Test at the 5% level of significance.

Step 1. Set up hypotheses and determine level of significance. H₀: $\delta = 0$ vs. H₁: $\delta < 0$ $\alpha = 0.05$

Step 2. Select the appropriate test statistic.

 $W = \min(W+, W-)$, W+ = sum of + ranks, W- = sum of - ranks

S	tep 3. Set up de	cision ru	le.			S	tep 4	. Comput	e the tes	t statistic.	
	Reject H ₀ if <i>W</i>	$V < W_{0.05}$	5,8•								
						Ρ	F	d=F-B	Signs	Ranks	SgnRnk
L L	Two-Sided Testα	.10	.05	.02	.01	8	7	-1	-1	3.5	-3.5
	One-Sided Test α	.05	.025	.01	.005	6	6	0	0	1	0
	n					4	5	1	1	3.5	3.5
	5	1				12	11	-1	-1	3.5	-3.5
	6	2	1	0		10	7	-3	-1	6.5	-6.5
	/	4	2	2	0	8	4	-4	-1	8	-8
	0	0	4	2	0	6	3	-3	-1	6.5	-6.5
						2	1	-1	-1	3.5	-3.5
						V V V	$W_{-} = 3$ $W_{+} = 3$ $W_{-} = 3$.	8.5 31.5 5			

Step 5. Conclusion.

We <u>reject</u> H_0 because 3.5 < 6. We <u>do</u> have statistically significant evidence at α =0.05 to show that the number of sick days reduced. Compare to *t*?

Note: $\overline{X} = -1.50$, s = 1.69, t = -2.51, $t_{0.05,14} = -2.365$

Employee	Prior	Following
1	8	7
2	6	6
3	4	5
4	12	11
5	10	7
6	8	4
7	6	3
8	2	1

Chapter 10 Problem Solving # 2 (Wilcoxon Sign Rank Test), 4 (Kruskal-Wallis Test)

4. The following data represent the number of playground injuries occurring among children aged 5-9 over a 3-month period in 12 playgrounds in and around the neighborhoods of Boston. Playground injuries include fractures, internal injuries, lacerations, and dislocations. The question of interest is whether there are differences in the numbers of injuries at playgrounds in various locations. The data below represents the numbers of injuries recorded at randomly selected playgrounds located on school properties, at day-care centers, and residential neighborhoods.

School Properties:	39 51 42 29	(Group 1)
Day Care Centers:	28 25 30 15	(Group 2)
Residential Neighborhoods	5:	18 16 25 22 (Group 3)

Run the appropriate test at a 5% level of significance.

Step 1. Set up hypotheses and determine level of significance. $\alpha = 0.05$

 H_0 : The three population medians are equal vs.

 $H_1\!\!:$ The three population medians are not equal.

Step 2. Select the appropriate test statistic.

$$H = \frac{12}{N(N+1)} \sum_{j=1}^{k} \frac{R_j^2}{n_j} - 3(N+1),$$

$$R_j$$
=sum of ranks of sample *j*, $N=n_1+n_2+n_3$.

Step 3. Set up decision rule.

Reject H ₀ if $H \ge H_{\alpha,n_1,n_2,n_3} = H_{0.05,4,4,4} = 5.692$.	Reject H_0 if $H \ge H_{\alpha,n_1}$,n ₂ ,n ₃ =H _{0.05,4,4}	_{4,4} =5.692.
--	--	--	------------------------

Thr	ee gro	ups		
n ₁	n ₂	n ₃	<i>α</i> = .05	<i>α</i> = .01
4	4	4	5.692	7.654

Step 4. Compute t	the test	statistic.
-------------------	----------	------------

Group 1	Group 2	Group 3	Ranks 1	Ranks 2	Ranks 3
	15			1	
		16			2
		18			3
		22			4
	25			5.5	
		25			5.5
	28			7	
29			8		
	30			9	
39			10		
42			11		
51			12		
			$R_1 = 41$	$R_2 = 22.5$	$R_3 = 14.5$

$$H = \frac{12}{N(N+1)} \left(\frac{41^2}{4} + \frac{22.5^2}{4} + \frac{14.5^2}{4} \right) - 3(12+1) = 7.1058$$

Step 5. Conclusion.

Because $H=7.1058 \ge H_{0.05,4,4,4}=5.692$, reject H₀. Evidence to show there are differences in the numbers of injuries at playgrounds in various locations at the $\alpha = 0.05$ level.