MATH 4740/MSSC 5740
Chapter 10 Problem Solving \# * (sign test), 5 (Mann-Whitney U Test)

10.5 Summary
Sign Test: $M D=M D_{0}$ (One Sample) $x=$ number of observations $>M D_{0}$ If value $<M D_{0},-$. If value $=M D_{0}, 0$. If value $>M D_{0},+$. Mann-Whitney U Test: Two populations equal or not (not-Paired) $U_{1}=n_{1} n_{2}+\frac{n_{1}\left(n_{1}+1\right)}{2}-R_{1}$ $U_{2}=n_{1} n_{2}+\frac{n_{2}\left(n_{2}+1\right)}{2}-R_{2}$ $U=\min \left(U_{1}, U_{2}\right)$

Sign Test Table (Table 6)

Two-Sided Test $\boldsymbol{\alpha}$.10	.05	.02	.01
One-Sided Test $\boldsymbol{\alpha}$.05	.025	.01	.005

1				
2				
3				
4				
5	0			
6	0	0		
7	0	0	0	
8	1	0	0	0
9	1	1	0	0
10	1	1	0	0
11	2	1	1	0
12	2	2	1	1
13	3	2	1	1
14	3	2	2	1
15	3	3	2	2
16	4	3	2	2
17	4	4	3	2
18	5	4	3	3
19	5	4	4	3
20	5	5	4	3
21	6	5	4	4
22	6	5	5	4
23	7	6	5	4
24	7	6	5	5
25	7	7	6	5

Mann-Whitney U Test Table (Table 7) $n_{1} \leq n_{2}$

Two-Sided Test $\alpha=0.05$																				
										n										
n_{2}	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2								0	0	0	0	1	1	1	1	1	2	2	2	2
3					0	1	1	2	2	3	3	4	4	5	5	6	6	7	7	8
4				0	1	2	3	4	4	5	6	7	8	9	10	11	11	12	13	13
5			0	1	2	3	5	6	7	8	9	11	12	13	14	15	17	18	19	20
6			1	2	3	5	6	8	10	11	13	14	16	17	19	21	22	24	25	27
7			1	3	5	6	8	10	12	14	16	18	20	22	24	26	28	30	32	34
8		0	2	4	6	8	10	13	15	17	19	22	24	26	29	31	34	36	38	41
9		0	2	4	7	10	12	15	17	20	23	26	28	31	34	37	39	42	45	48
10		0	3	5	8	11	14	17	20	23	26	29	33	36	39	42	45	48	52	55
11		0	3	6	9	13	16	19	23	26	30	33	37	40	44	47	51	55	58	62
12		1	4	7	11	14	18	22	26	29	33	37	41	45	49	53	57	61	65	69
13		1	4	8	12	16	20	24	28	33	37	41	45	50	54	59	63	67	72	76
14		1	5	9	13	17	22	26	31	36	40	45	50	55	59	64	67	74	78	83
15		1	5	10	14	19	24	29	34	39	44	49	54	59	64	70	75	80	85	90
16		1	6	11	15	21	26	31	37	42	47	53	59	64	70	75	81	86	92	98
17		2	6	11	17	22	28	34	39	45	51	57	63	67	75	81	87	93	99	105
18		2	7	12	18	24	30	36	42	48	55	61	67	74	80	86	93	99	106	112
19		2	7	13	19	25	32	38	45	52	58	65	72	78	85	92	99	106	113	119
20		2	8	13	20	27	34	41	48	55	62	69	76	83	90	98	105	112	119	127

One-Sided Test $\alpha=0.05$

n_{1}																				
n_{2}	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
2					0	0	0	1	1	1	1	2	2	2	3	3	3	4	4	4
3			0	0	1	2	2	3	3	4	5	5	6	7	7	8	9	9	10	11
4			0	1	2	3	4	5	6	7	8	9	10	11	12	14	15	16	17	18
5		0	1	2	4	5	6	8	9	11	12	13	15	16	18	19	20	22	23	25
6		0	2	3	5	7	8	10	12	14	16	17	19	21	23	25	26	28	30	32
7		0	2	4	6	8	11	13	15	17	19	21	24	26	28	30	33	35	37	39
8		1	3	5	8	10	13	15	18	20	23	26	28	31	33	36	39	41	44	47
9		1	3	6	9	12	15	18	21	24	27	30	33	36	39	42	45	48	51	54
10		1	4	7	11	14	17	20	24	27	31	34	37	41	44	48	51	55	58	62
11		1	5	8	12	16	19	23	27	31	34	38	42	46	50	54	57	61	65	69
12		2	5	9	13	17	21	26	30	34	38	42	47	51	55	60	64	68	72	77
13		2	6	10	15	19	24	28	33	37	42	47	51	56	61	65	70	75	80	84
14		2	7	11	16	21	26	31	36	41	46	51	56	61	66	71	77	82	87	92
15		3	7	12	18	23	28	33	39	44	50	55	61	66	72	77	83	88	94	100
16		3	8	14	19	25	30	36	42	48	54	60	65	71	77	83	89	95	101	107
17		3	9	15	20	26	33	39	45	51	57	64	70	77	83	89	96	102	109	115
18		4	9	16	22	28	35	41	48	55	61	68	75	82	88	95	102	109	116	123
19	0	4	10	17	23	30	37	44	51	58	65	72	80	87	94	101	109	116	123	130
20	0	4	11	18	25	32	39	47	54	62	69	77	84	92	100	107	115	123	130	138

MATH 4740/MSSC 5740

Chapter 10 Problem Solving \# * (sign test), 5 (Mann-Whitney U Test)

10.6 Practice Problems

* A group of $n=15$ students was surveyed about the number of times they've unlocked their phone yesterday. Unlocks: 12 13 13 19 20 21 21 23 23 24 25 Their statistics professor claims students unlock their phone more than 20 times per day. Go through the 5 hypothesis testing steps to test whether the median number is greater than 20. $\alpha=0.05$

Step 1. Set up hypotheses and determine level of significance.
H_{0} : vs. H_{1} :

Step 2. Select the appropriate test statistic.
Use binomial probabilities $n=5, p=1 / 2$.

Step 3. Set up decision rule.
Reject H_{0} if $P\left(X \geq x_{\alpha}\right) \leq \alpha$

\mathbf{x}	$\mathbf{P}(\mathbf{X}=\mathbf{x})$	$\mathbf{P}(\mathbf{X} \leq \mathbf{x})$	$\mathbf{P}(\mathbf{X} \geq \mathbf{x})$
0	0.0000	0.0000	1.0000
1	0.0005	0.0005	1.0000
2	0.0032	0.0037	0.9995
3	0.0139	0.0176	0.9963
4	0.0417	0.0592	0.9824
5	0.0916	0.1509	0.9408
6	0.1527	0.3036	0.8491
7	0.1964	0.5000	0.6964
8	0.1964	0.6964	0.5000
9	0.1527	0.8491	0.3036
10	0.0916	0.9408	0.1509
11	0.0417	0.9824	0.0592
12	0.0139	0.9963	0.0176
13	0.0032	0.9995	0.0037
14	0.0005	1.0000	0.0005
15	0.0000	1.0000	0.0000

Reject H_{0} if $x \geq$

Step 4. Compute the test statistic.
$x=\left(\right.$ the number of observations $\left.>M D_{0}\right)$

Sorted	Signs $\mathbf{2 0}$	Ranks
12		
13		
19		
20		
21		
21		
23		
23		
24		
25		
28		
29		
34		
38		
47		

$x=$
\square
Step 5. Conclusion.
We \qquad H_{0} because < . We \qquad have statistically significant evidence at $\alpha=0.05$ to show that the statistics students look at their phone more than 20 times per day. Compare to t ? Note: $\bar{X}=24.933, s=9.0512, t=2.1713, t_{0.05,14}=1.761$

MATH 4740/MSSC 5740

Chapter 10 Problem Solving \# * (sign test), 5 (Mann-Whitney U Test)
5. The recommended daily allowance of Vitamin A for children between 1 and 3 years of age is 400 micrograms (mcg). Vitamin A deficiency is linked to a number of adverse health outcomes, including poor eyesight, susceptibility to infection, and dry skin. The following are Vitamin A concentrations in children with and without poor eyesight, a history of infection, and dry skin.
With: 120420180345390430 (Group 1)
Without: $450500395380430 \quad$ (Group 2)
Is there a significant difference in Vitamin A concentrations between children with and without poor eyesight, a history of infection, and dry skin? Run the appropriate test at a 5% level of significance.

Step 1. Set up hypotheses and determine level of significance.
H_{0} : The two populations are equal
vs.
H_{1} : The two populations are not equal. $\alpha=0.05$

Step 2. Select the appropriate test statistic.

$$
U=\min \left(U_{1}, U_{2}\right), \quad U_{1}=n_{1} n_{2}+\frac{n_{1}\left(n_{1}+1\right)}{2}-R_{1}, \quad U_{2}=n_{1} n_{2}+\frac{n_{2}\left(n_{2}+1\right)}{2}-R_{2}
$$

Step 3. Set up decision rule.
Reject H_{0} if $U<U_{\alpha, n_{1}, n_{2}}$

Step 4. Compute the test statistic.

Total Sample		Ranks		$U_{1}=$	$)=$
With	Without	With	Without		
120					
180				$\begin{aligned} & U_{2}= \\ & U=\min (\end{aligned}$	
345					
	380				
390					
	395				
420					
430	430				
	450				
	500				
		$\mathrm{R}_{1}=$	$\mathrm{R}_{2}=$		

Step 5. Conclusion.

