Chapter 6 Problem Solving \# 2, 8, 6

6.7 Summary

Number of Groups, Outcome: Parameter	Confidence Interval, $n<30$	Confidence Interval, $n \geq 30$
One sample, continuous: Cl for μ	$\bar{X} \pm t_{\frac{\alpha}{2}, d f} \frac{s}{\sqrt{n}}$	$\bar{X} \pm z_{\frac{\alpha}{2}} \frac{s}{\sqrt{n}}$
One sample, dichotomous: Cl for p	(Not taught in this class.)	$\hat{p} \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}$
Two independent samples, continuous: Cl for $\mu_{1}-\mu_{2}$	$\begin{aligned} & \left(\bar{X}_{1}-\bar{X}_{2}\right) \pm t_{\frac{\alpha}{2}, d f} S_{P} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}} \\ & S_{P}=\sqrt{\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2}} \\ & d f=n_{1}+n_{2}-2 \end{aligned}$	$\begin{aligned} & \left(\bar{X}_{1}-\bar{X}_{2}\right) \pm z_{\frac{\alpha}{2}} S_{P} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}} \\ & S_{P}=\sqrt{\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}{ }^{2}}{n_{1}+n_{2}-2}} \end{aligned}$
Two matched samples, continuous: Cl for $\mu_{d}=\mu_{1}-\mu_{2}$	$\begin{aligned} & \bar{X}_{d} \pm t_{\frac{\alpha}{2}, d f} \frac{s_{d}}{\sqrt{n}} \\ & d f=n-1 \end{aligned}$	$\bar{X}_{d} \pm z_{\frac{\alpha}{2}} \frac{s_{d}}{\sqrt{n}}$
Two independent samples, dichotomous: Cl for $R D=\left(p_{1}-p_{2}\right)$	(Not taught in this class.)	$\left(\hat{p}_{1}-\hat{p}_{2}\right) \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}$
Cl for $\ln (R R)=\ln \left(p_{1} / p_{2}\right)$	(Not taught in this class.)	$\ln (R R) \pm z_{\frac{\alpha}{2}} \sqrt{\frac{\left(n_{1}-X_{1}\right) / X_{1}}{n_{1}}+\frac{\left(n_{2}-X_{2}\right) / X_{2}}{n_{2}}}$
Cl for $R R=p_{1} / p_{2}$	(Not taught in this class.)	\exp (Lower Limit), $\exp ($ Upper Limit $)$
$\begin{aligned} & \mathrm{Cl} \text { for } \ln (O R)= \\ & \ln \left(\left[p_{1} /\left(1-p_{1}\right)\right]\left\lceil\left[p_{2} /\left(1-p_{2}\right)\right]\right)\right. \end{aligned}$	(Not taught in this class.)	$\ln (O R) \pm z_{\frac{\alpha}{2}} \sqrt{\frac{1}{X_{1}}+\frac{1}{n_{1}-X_{1}}+\frac{1}{X_{2}}+\frac{1}{n_{2}-X_{2}}}$
Cl for $O R=\left[p_{1} /\left(1-p_{1}\right)\right] \\left[p_{2} /\left(1-p_{2}\right)\right]$	(Not taught in this class.)	\exp (Lower Limit), $\exp ($ Upper Limit $)$

Number of Groups, Outcome: Parameter

One sample, continuous:
CI for μ

Two inde pendent samples, continuous:
CI for $\left(\mu_{1}-\mu_{2}\right)$
Two matched samples, continuous:
CI for μ_{t}

Two inde pendent samples, dichotomous:

$$
\mathrm{CI} \text { for } \mathrm{RD}=\left(p_{1}-p_{2}\right)
$$

Two independent samples, dichotomous:
CI for OR $=\frac{x_{1} /\left(n_{1}-x_{1}\right)}{x_{2} /\left(n_{2}-x_{2}\right)}$

Confidence Interval ${ }^{\text {a }}$

$$
\bar{x} \pm z \frac{s}{\sqrt{n}}
$$

$$
\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm z S_{p} \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}
$$

$$
\bar{X}_{d} \pm z \frac{s_{d}}{\sqrt{n}}
$$

$$
\left(\hat{p}_{1}-\hat{p}_{2}\right) \pm z \sqrt{\frac{\hat{p}_{1}\left(1-\hat{p}_{1}\right)}{n_{1}}+\frac{\hat{p}_{2}\left(1-\hat{p}_{2}\right)}{n_{2}}}
$$

$$
\exp (\text { Lower limit }), \exp (\text { Upper limit })
$$

$\ln (\hat{O R}) \pm z \sqrt{\frac{1}{x_{1}}+\frac{1}{\left(n_{1}-x_{1}\right)}+\frac{1}{x_{2}}+\frac{1}{\left(n_{2}-x_{2}\right)}}$
$\exp ($ Lower limit), $\exp ($ Upper limit)

MATH 4740/MSSC 5740
Chapter 6 Problem Solving \# 2, 8, 6

MATH 4740/MSSC 5740
Chapter 6 Problem Solving \# 2, 8, 6

6.8 Practice Problems

2. A clinical trial is planned to compare an experimental medication designed to lower blood pressure to a placebo. Before starting the trial, a pilot study is conducted involving 10 participants. The objective of the study is to assess how systolic blood pressure changes over time untreated. Systolic blood pressures are measured at baseline and again 4 weeks later. Compute a $95 \% \mathrm{Cl}$ for the difference in blood pressures over 4 weeks.

Answer:
8. Table 6.26 displays descriptive statistics on participants involved in the study described in Problem 7.

TABLE 6.26 Descriptive Statistics by Treatment

Experimental Medication $(n=100)$ Placebo $(n=100)$
Mean (SD) age, years
Men (\%)
47.2 (4.3)

Mean (SD) educational level, years 13.1 (2.9)
46.1 (5.1)

Mean (SD) annual income $\$ 36,560$ (\$1054)
14.2 (3.1)

Mean (SD) body mass index (BMI) 24.7 (2.7)
a. Generate a $95 \% \mathrm{Cl}$ for the mean age among participants assigned to the placebo.
b. Generate a $95 \% \mathrm{Cl}$ for the difference in mean ages of participants assigned to the experimental versus the placebo groups.
c. Generate a $95 \% \mathrm{CI}$ for the difference in mean BMI in participants assigned to the experimental versus the placebo groups.

Chapter 6 Problem Solving \# 2, 8, 6
6. Data are collected in a clinical trial evaluating a new compound designed to improve wound healing in trauma patients. The new compound is compared against a placebo. After treatment for 5 days, with the new compound or placebo, the extent of wound healing is measured and the data are shown in Table 6.25. Suppose that clinicians feel that if the percentage reduction in the size of the wound is greater than 50%, then the treatment is a success.
TABLE 6.25 Wound Healing by Treatment

| | Number of Patients with Percent Reduction in Size of Wound | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Treatment | None | $\mathbf{1 - 2 5 \%}$ | $\mathbf{2 6 - 5 0 \%}$ | $\mathbf{5 1 - 7 5} \%$ | $\mathbf{7 6 - 1 0 0 \%}$ |
| New compound $(n=125)$ | 4 | 11 | 37 | 32 | 41 |
| Placebo $(n=125)$ | 12 | 24 | 45 | 34 | 10 |

a. Generate a 95% CI for the percent success in patients receiving the new compound.
b. Generate a $95 \% \mathrm{Cl}$ for the difference in the percent success between the new compound and placebo.

MATH 4740/MSSC 5740
Chapter 6 Problem Solving \# 2, 8, 6
c. Generate a $95 \% \mathrm{Cl}$ for the RR of treatment success between treatments.
d. Generate a $95 \% \mathrm{Cl}$ for the OR of treatment success between treatments.

