4.4 Summary

Variable Type	Statistic/Graphical Display	Definition
Dichotomous, Ordinal, or Categorical	Relative Frequency	Frequency/n
Dichotomous or Categorical	Frequency or Relative Frequency Bar Chart	
Ordinal	Frequency or Relative Frequency Histogram	
Continuous	Mean Standard Deviation Median First Quartile Third Quartile Interquartile Range Criteria for Outliers Box-Whisker Plot	$\overline{X} = \frac{\sum X}{n}$ $s = \sqrt{\frac{\sum (X - \overline{X})^2}{n - 1}} = \sqrt{\frac{\sum X^2 - \frac{1}{n} (\sum X)}{n - 1}}$ Middle value in ordered dataset $Q_1 = \text{Value holding 25\% below in}$ $Q_3 = \text{Value holding 25\% above in}$ $IQR = Q_3 - Q_1$ Values below $Q_1 - 1.5 \times (Q_3 - Q_1)$ or above $Q_3 + 1.5 \times (Q_3 - Q_1)$

- Q_1 is the 25th percentile. Median of lower half.
- ${\it Q}_2$ is the $50^{
 m th}$ percentile AKA median
- Q_3 is the 75th percentile. Median of upper half.

4.1 Practice Problems

1. A study is run to estimate the mean total cholesterol level in children 2 to 6 years of age. A sample of nine participants is selected and their total cholesterol levels are measured as follows:

185	225	240	196	175
180	194	147	223	

a. Compute the sample mean.

b. Compute the sample standard deviation.

c. Compute the median.

d. Compute the first and third quartiles.

e. Which measure, the mean or median, is a better measure of a typical value? Justify.

f. Which measure, the standard deviation or the interquartile range, is a better measure of dispersion? Justify.

Х	X^2	
147	21,609	
175	30,625	
180	32,400	
185	34,225	
194	37,636	
196	38,416	
223	49,729	
225	50.625	
240	57,600	
1765	352,865	
$\overline{\mathbf{X}} = \frac{\Sigma \mathbf{X}}{\mathbf{n}} =$	$=\frac{1,765}{9}=196.1$	
$s = \sqrt{\frac{\Sigma X^2}{2}}$	$\frac{-(\Sigma X)^2/n}{n-1} = \sqrt{\frac{2}{n}}$	$\frac{\overline{352,865 - (1,765)^2/9}}{9 - 1} = \sqrt{\frac{352,865 - (3,115,225/9)}{8}}$
$=\sqrt{\frac{352}{352}}$,865 – 346,136.1 8	$\overline{4} = \sqrt{\frac{6,728.89}{8}} = \sqrt{841.1} = 29.0$
	00 105 104 106	222 225 240

c. 147, 175, 180, 185, 194, 196, 223, 225, 240

a.

b.

d. $Q_1 = ((175 + 180)/2 = 177.5$ $Q_3 = (223 + 225)/2 = 224$

- e. No outliers, therefore the best measure of a typical value is the sample mean, 196.1. Check for outliers: IQR = 224 - 177.5 = 46.5 Lower Limit = 177.5 - 1.5(46.5) = 107.8 Upper Limit = 224 + 1.5(46.5) = 293.8
- f. Because there are no outliers, the best measure of dispersion is the sample standard deviation, *s* = 29.0.