Intro to Regression & Classification

Chapter 4: Multiple Regression Models

Dr. Daniel B. Rowe
Professor of Computational Statistics
Department of Mathematical and Statistical Sciences
Marquette University

Copyright D.B. Rowe



Intro to Regression & Classification

Multiple Regression Models
General Form of a Multiple Regression Model

The Multiple (“Linear in Parameters”) Regression Model

V=0, + X+ L% +..+ [ X +¢&

where
y = Dependent variable (variable to be modeled-sometimes called the
response variable)
X1, ees Xy = Independent variables (variables used as predictors of y)

E(Y| X1, .- X) = Bot BrXy +..o + By

g = Random error component
Bo = y-intercept of the line
pi = determines the contribution of the independent variable ;.

Note: The symbols x,,...,x, may represent higher-order terms for quantitative

predictors (e.g., X,=x,2) or terms for qualitative predictors (0/1).
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Multiple Regression Models V= B+ BX + BX ot X &
General Form of a Multiple Regression Model

Steps in a Regression Analysis
Analyzing a Multiple Regression Model

Step 1.
Step 2.
Step 3.
Step 4.
Step 5.
Step 6.

Step 7.

Collect the sample data (y, x,,...,X,) for each experimental unit in the sample.
Hypothesize the form of the model, E(y).

Use least squares to estimate the unknown parameters g,,5,..., P

Specify the distribution of the random error ¢ and estimate its variance o?.
Statistically evaluate the utility of the model.

Check that the assumptions on ¢ are satisfied and make model modifications,
If necessary.

Finally, if the model is deemed adequate, use the fitted model to estimate

the mean value of y or to predict a particular value of y for given values of
the independent variables, and to make other inferences.
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Multiple Regression Models
Model Assumptions

The multiple regression model

Determiniitic Portion Random Error

y::80+,81x1+,82x2+...+,8kx;+ £

Assumptions About the Random Error ¢

1. For any given set of values of x,,...,X,,the error ¢ has a normal probability distribution
with mean equal to O [i.e., E(¢)=0] and variance equal to o? [i.e.,var(¢)=c ].
(Normal only needed for inferences, Cls and HTs).

2. The random errors are independent (in a probabilistic sense).
(For normal errors, independent and uncorrelated are the same.)

Model is called first order if of x,,...,X,, are all quantitative variables that are not
functions of other independent variables.
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Multiple Regression Models
Fitting the Model: The Method of Least Squares

The multiple regression model

Determiniitic Portion Random Error
y=p0,+ X + X +...+ X + g y

estimate coefficients as
)A/Zléo"":élxl"l',ézxz""-""'ﬁkxk
by minimizing the SSE

SSE = 3" (Y= By — BXa = B == BKe)
OSSE ~ OSSE
Po lpy...h P 4.
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Multiple Regression Models
Fitting the Model: The Method of Least Squares

The multiple regression model

Yi :180 + BXi + B X+ BX+ &

Y1
Y2
Y: y3 X —
RO
Y =XB+E

1 X,
1 X,
1 X

_1 X,

X21 an
Xyp 0 Ky
ng X3
X2n Xk

n _

=1....n

o
P
P,

P

Observation | yValue | L1 L2 Lk
1 U L11 | L21 Tkl
2 Y2 12 | L22 Lr2
n Yn Tin | T2n Lkn
2
o IB k in

(Y=XB)(Y=XB)=(y=XB) (Y =XB) +(B=BV X' X)NB=P)—  aigera
B=(X"X)"X'Y minimizes SSE and s =(y—Xp)(y-=XB)/(n-k-1).
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Multiple Regression Models
Estimation of o2 the Variance of ¢

The value of 62 is needed in statistical inference related to regression analysis.
Therefore, we need to estimate the value of .

The best estimate of 62 is s?.

B SSE ~ SSE _Js?
Degrees of Freedom n—(k+1) °

s* = MSE
n-(number of coefficients)

SSE = Z::l(yi _ g’i)2 — Z:]Zl(yi _:Bo _/leli _132X2i _---_,kaki 2

We refer to s as the estimated standard error of the regression model.
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Multiple Regression Models
Testing the Utility of a Model: The Analysis of Variance F-Test

For the general multiple linear regression model, E(y|Xy, ...,X)=Bo S X t. .. +B X,
we may test

Ho: p=po=.. =A=0
VS.
H_: At least one of the coefficients Is nonzero.

The test statistic Is an F statistic,

(SS,, —SSE)/k  Mean Square (Model) R* Ik

SSE /[n—(k+1)] MSE  (@-RH)/[n-(k+1)]
Rejection region: F>F , where F is based on
k numerator and n-(k+1) denominator df or
a>p-value, where p-value=P(F>F ). /

0 Fe

Test Statistic: F =

>~ F

| Rejection region
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Multiple Regression Models
Inferences About the Individual g Parameters

Test of an Individual Parameter Coefficient in the Multiple Regression Model

ONE-TAILED TESTS TWO-TAILED TEST

Hp:B; =0 Hp:8;=0 Hy: 3; =0
Ha:f)’@'<0 Ha:,&;>0 Ha:,@z‘%o
Test Statistic: tzéﬂ Y =5\/wn
A
W. is the it" diagonal element of W = (X 'X)™.
Rejection region: t<-t_ >t t>t,

where t, and t ,, are based on n-(k+1) degrees of freedom.

A
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Multiple Regression Models ] _

Inferences About the Individual g Parameters LoXy X X

X12 X22 Xk2

A 100(1-a)% Confidence Interval for a g Parameter X=[1 X3 X - X
ﬂi i1:05/28153i :

_1 Xln X2n an

where t ,, IS based on n-(k+1) degrees of freedom.

X=[1l]— X'X=n
W. is the it diagonal element of W = (X ' X)™.

D.B. Rowe



Intro to Regression & Classification

Multiple Regression Models
Multiple Coefficients of Determination: R? and R?,

In Chapter 3, the coefficient of determination, r?, is a measure of how well a
straight-line model fits a data set.

To measure how well a multiple regression model fits a set of data, we compute
the multiple coefficient of determination and denoted by R2.

R? =1—§S—E, 0<R*<1

yy
where SSE =» (y, - ¥,)*, SS,, =) (y;—Y)” and ¥, is the predicted value of y; for the
multiple regression model.
Adjusted R? to penalize more parameters

Re_q-| Nt B, 1 n=l g Ry R2<R?

* 7 | n—(k+1)|SS n—(k+1)
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Multiple Regression Models
Example: Vi = By + BX + X, + &

Price y for clocks depends on their age x, and the number of bidders x..

Price Age Bidders
127 13 1235

y =-1339+12.74x%, +85.95x, The REG Procedure 0 14 2131

Model: Linear_Regression_Model i;i 12 1‘;?8
Scatterplot of PRICE vs AGE, NUMBIDS Dependent Variable: PRICE 127 7 8as
162 11 1884
= 50 1P Nu’h‘;'gms SO B0 'Number of Observations Read | 32| S
2200 Number of Observations Used |32 156 6 1047
¢ < ' 143 6 845
= & | AnaIyS|s of Varlance 182 11 1979
2000 ® ° Sumof M 159 9 1483
P 156 12 1822
0s o? ¥ . Source IDF m : ,‘_,lFVaIue Pr>F T
. ' Model | 2| 4283063 2141531 120.19| <.0001 132 10 1253
s . Error 29 516727 17818 | 175 8 145
" Lo o e ‘. Corrected Total | 31| 4799790 ———
Z 1400 e 'RootMSE | 1133148467 R-Square | 0.8923 D
. S8 . & . : Dependent Mean I 1326.87500 Adj R-Sq 1 0.8849 137 15 1713
1200/ , °* ’ % ‘Coeff Var | 10.06008| \ 1115 1175
< £ " a o < R — ' 117 11 1024
o ° o o ® » Parameter Estimates 187 8 1593

< ° |
= . . Parameter| Standard —
800 @ ° e o Varlable i) . E"Of t Value Pr> ltl 153 6 1092
oo o ¢ | 8.95134 173.80947 -7.70 <.0001 s 7 744
00 0.90474 14.08| <.0001| gz 13 1;?2

168 7 1262
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Multiple Regression Models
Example: Vi = By + BX + X, + &

Price y for clocks depends on their age x, and the number of bidders x..

# read data and parse variables e —

. . . 127 13 1235

y i -1339 + 1274X1 4 8595X2 read datamydata <- read.delim("PriceAgeBidders.txt“, header = FALSE) = T BT

_ 115 12 1080

X <- c(mydatal, 1])#Age T B

y <- c(mydatal, 2])#Bidders 127 7 845

. 162 11 1884

z <- c(mydatal, 3])#Price 150 9 1522

H H 184 10 2041

#f Compute the linear regression T

= fit<-Im(z~ x +vy) 143 6 845

@ . 182 11 1979

summary(fit) 159 9 1483

# create a grid from the x and y and fitted points for droplines to the surface —

x.pred <- seq(min(x), max(x), length.out = 50) 132 10 1253

. 175 8 1545

o y.pred <- seq(min(y), max(y), length.out = 50) 137 9 1297

= _ ; — — 108 6 729

& xy <- expand.grid( x = x.pred, y = y.pred) —

N e z.pred <- matrix(predict(fit, newdata = xy), nrow = grid.lines, ncol = grid.lines) B

InCformula = z ~ x + ¥) fitpoints <- predict(fit) 111 15 1175

Residuals: _ . . 117 11 1024

fzoeug 7117&3 Migfgg 102;(52 213&513 #Scatte"r pIOt V\|/||th regre55|on plane 187 8 1593

coefficients: Ilbra FY( pIOt3D ) 137 8 1147

stimate std. Error t value Pr(>|t|) . 111 7 785

ancercept) -1338.9313  172.8005 71704 1.71e-08 +21 scatter3D(x, vy, z, pch=19, cex=1,colvar=NULL, col="red", theta=20, phi=10, 153 6 1092

- 859590 87285 9.847 9-3head v bty="b", xlab="Age", ylab="Bidders", zlab="Price", surf=list(x = x.pred, y = y.pred, 1 .. .
Signif. codes: 0 ‘#***’ (0,001 ‘**' 0,01 ‘*” 0.05 ‘." 0.1 * * 1 . . . n n

_ - z=z.pred, facets=TRUE, fit=fitpoints, col=ramp.col (col=c("dodgerblue3", 194 5 135

Resu?ueﬂ standard t'error: 133.5 on 2‘9 degrees of frc:zedom . . 126 10 1336

L U A IPTN iv T A "seagreen2"), n = 300, alpha=0.9), border="black"), main = "Auction") 168 7 1262
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Multiple Regression Models
Example:

Y, =,30+,81X1-I—,32X2+8

Price y for clocks depends on their age x, and the number of bidders x..

y =-1339+12.74x, +85.95X,

2500 - R
s ®
2000 -
®
®
o 1500
L
_
0 1000 4
500 4
0l
100
150 10
Age 200 5 Bidders
Estimate SE tStat pValue
(Intercept) -1339 173.81 -7.7036 1.7058e-08
x1 12.741 0.90474 14.082 1.6928e-14
x2 85.953 8.7285 9.8474 9.345e-11

Number of observations: 32, Error degrees of freedom: 29
Root Mean Squared Error: 133

R-squared: 0.892, Adjusted R-Squared: 0.885

F-statistic vs. constant model: 120, p-value = 9.22e-15

15

% load data

load PriceAgeBidders.txt
n=size(PriceAgeBidders,1);
y=PriceAgeBidders(:,3);
x1=PriceAgeBidders(:,1);
x2=PriceAgeBidders(:,2);
X=[ones(n,1),x1,x2];

% estimate coefficients

mdl = fitlm([x1,x2],y)
anova(mdl,'summary’)

figure;
scatter(PriceAgeBidders(:,1),y, filled’)
xlim([100,200]), ylim([600,2200])
xlabel('Age'), ylabel('Price’)
%print('PriceAge’,'-dpng’)

figure;
scatter(PriceAgeBidders(:,2),y, filled')
xlim([4.5,15.5]), ylim([600,2200])
xlabel('Bidders'), ylabel('Price')

Residual

% 3D plot

figure;

scatter3(x1,x2,y, filled’)

hold on

x1fit = min(x1):10:max(x1);

x2fit = min(x2):1:max(x2);
[X1FIT,X2FIT] = meshgrid(x1fit,x2fit);
bO=mdl.Coefficients(1,1).(1);
b1=mdl.Coefficients(2,1).(1);
b2=mdl.Coefficients(3,1).(1);
YFIT = b0 + b1*X1FIT + b2*X2FIT;
mesh(X1FIT,X2FIT,YFIT)
xlabel('Age'), ylabel('Bidders'),
zlabel('Price’)

view(45,35)

hold off

SumSq DF MeanSq F

pValue

4.7998e+06 31 1.5483e+05
4.2831e+06 2 2.1415e+06

5.1673e+05, 29 17818
‘—T—!
SSE

120.19

9.2164e-15

Price Age Bidders

127
170
115
182
127
162
150
184
156
143
182
159
156
108
132
175
137
108
113
179
137
111
117
187
137
111
153
115
117
194
126
168

13
14
12
8
7
11
9
10
6
6
11
9
12
14
10

1235
2131
1080
1550

845
1884
1522
2041
1047

845
1979
1483
1822
1055
1253
1545
1297

729

946
1792
1713
1175
1024
1593
1147

785
1092

744
1152
1356
1336
1262
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Multiple Regression Models R

Using the Model for Estimation and Prediction

1 127 13

1 184 10
1 156 6

Example 4.5: Price y for clocks depends on their age X, and the number of bidders x,.: =

1 159 9
1 156 12

y =-1339 +12.74x, +85.95X, 1108 14
a. Estimate the average auction price for all 150-year-old clocks sold at X =
auctions with 10 bidders using a 95% confidence interval. Interpret the result.
X, =[1,150,10] e
§(x,) = X, 4=-1339 +12.74(150) + 85.95(10) =1431.7 s

32 4638 305 |1 &t

SE(§, ) = MSE(X,(X 'X)x) = [1781.8-[1,150,10]| 4638 695486 43594 | |150 |=24.58
305 43594 3157 | | 10
Cl = 9(%) £t,, SE(Y, ) =1431.7£2.04(24.58) — [1381.4,1481.9]

D.B. Rowe
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Multiple Regression Models
Using the Model for Estimation and Prediction

Example 4.5: Price y for clocks depends on their age x, and the number of bidders x.,.

y =-1339+12.74x, +85.95X,

b. Predict the auction price for a single 150-year-old clock sold at an auction with
10 bidders using a 95% prediction interval. Interpret the result.

X, =[1,150,10]
V(X,) = xoﬁ:—1339 +12.74(150) +85.95(10) =1431.7

% Matlab Code
Pl = (%) £,z 40 MSE +(SE(F,))’ 01115010

vhath=x0*[b0;b1;b2]

MSE=mdItable.MeanSq(3,1);
Pl =1431.7 + 2.04+/1781.8 + 24.58" SEyhat=sart(MSE*X0*inv(X *X)*x0'
ClL=yhath-tinv(1-0.05/2,n-k-1)*SEyhat
[115 411709 3] ClU=yhath+tinv(1-0.05/2,n-k-1)*SEyhat

PIL=yhath-tinv(1-0.05/2,n-k-1)*sqrt(MSE+SEyhat"2)
PIU=yhath+tinv(1-0.05/2,n-k-1)*sqrt(MSE+SEyhat"2)
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Multiple Regression Models
Using the Model for Estimation and Prediction

Example 4.5: Price y for clocks depends on their age x, and the number of bidders x.,.

y =-1339+12.74x, +85.95X,

Surface for clock auction price for age and bidders using a 95% confidence interval.

3000

108 < x, <194 5<X, <15 2500
J(Xo) = X3 g o _
Cl = (%)t 1 SE(Y,,) -
Pl = 9(X) £, 1" MSE + (SE(Y, )’ w

10
Bidders

D.B. Rowe
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Multiple Regression Models
A Test for Comparing Nested Models

F-Test for Comparing Nested Models
Reduced model:  E(y) = Bo + Bix1 + -+ + Bz,

E(y) =fBo + Pr1x1 + - + ngg
Complete model:
+Bg41Tgi1 + - - - + Brxk

HO:/89+1:/89+2:"':/816:0 / a
,/
H ,: At least one of the ,8 parameters being tested in nonzero.
e Dropin SSE/Number of S parameters being tested (SSE; —SSE.)/(k-g) R /k
s*for larger model SSE . /[n—(k +1)] 1-R?)/(n-k-1)
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Multiple Regression Models

Homework:
Read Chapter 4

droblems # 7 (GRAFTING), 13 (BUBBLE), 25 (TEAMPERF), 70

Submit at minimum one file with all your answers and another with your code.
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Multiple Regression Models

Questions?
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