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Intro to Regression & Classification

Simple Linear Regression
The Straight-Line Probabilistic Model

A First Order (Straight-Line) Model

y= :Bo T ﬂlx T &
where
y = Dependent variable (variable to be modeled-sometimes called the
response variable)
X  =Independent variable (variable used as predictor of y)
E(YIX) = fot X
¢ = (epsilon) = Random error component

B, = (beta zero) = y-intercept of the line
B, = (beta one) = Slope of the line.
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Intro to Regression & Classification

Simple Linear Regression
The Straight-Line Probabilistic Model y=p0+pX+¢

Steps in a Regression Analysis

Step 1.
Step 2.
Step 3.
Step 4.

Step 5.
Step 6.

Hypothesize the form of the model for E(y).

Collect the sample data.

Use the sample data to estimate unknown parameters in the model.
Specify the probabillity distribution of the random error term, and
estimate any unknown parameters of this distribution. Also, check the
validity of each assumption made about the probability distribution.
Statistically check the usefulness of the model.

When satisfied that the model is useful, use it for prediction, estimation,
and so on.
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Simple Linear Regression
The Straight-Line Probabilistic Model

straight-line model is hypothesized

y
A

g B
E(y) =By +Bx

} B, = Slope

increase in 'y for one
unit increase in X

b

P, = y-intercept

reference point | | | |

0 1 2 3 4

D.B. Rowe 4

> X



Intro to Regression & Classification

Simple Linear Regression
Fitting the Model: The Method of Least Squares

Example: The effect of Advertising on Revenue

Table 3.1
Appliance store data

Month | Advertising Expenditure x, hundreds
of dollars

Sales Revenue y, thousands
of dollars

1 1

1

2 2 1
3 3 2
4 4 2
5 5 4

The straight-line model is hypothesized to relate sales revenue y to advertising
expenditure x. That IS, y = f,+ fX+¢
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Simple Linear Regression
Fitting the Model: The Method of Least Squares

Example: The effect of Advertising on Revenue

Table 3.1
Appliance store data

Month | Advertising Expenditure x, hundreds Sales Revenue y, thousands
of dollars of dollars

1 1 1

2 2 1

3 3 2

4 4 2

5 5 4

Sales revenue

y
A
T /
3l |
error of prediction =y — y=2-3=—1
(or residual)
2 —
Ul L]
0 | L x
1 / 2 3 4 5
| Advertising expenditure

The straight-line model is hypothesized to relate sales revenue y to advertising

expenditure x. That IS, y = f,+ fX+¢
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Simple Linear Regression
Fitting the Model: The Method of Least Squares

The straight-line model for the response y in terms of x Is
y= :Bo T ﬂlx T &

The line of means Is

E(Y[X)=fy + BiX

The fitted line, which we hope to find, is represented as
y = IBO T 181)(

where

,BO and ,él are estimators of S, and g, respectively.
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Simple Linear Regression
Fitting the Model: The Method of Least Squares

For a given data point, say, (x.Y:), the observed value of y is y; and the predicted
value of y Is obtained by substituting x; into the prediction equation:

)A/: :éo +le
The deviation of the ith value of y from its predicted value, called the ith residual, Is
i = 9 =1y = (B + BX)]

Then the sum of squares of the deviations of the y-values about their predicted
values (i.e., the sum of squares of residuals) for all of the n data points is

SSE = Zin:l[yi - (/éo T ﬁlx)]z
The quantities £, and £, that make the SSE a minimum are called the least

squares estimates of the population parameters of g, and £;, and the prediction
equation y = 3, + S.X is called the least squares line.
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Simple Linear Regression
Fitting the Model: The Method of Least Squares

To derive the coefficient estimators, we minimize SSE WRT S, and p;.

SSE =Y (¥, — X’

- A <zy.><zx> (zx)(ny.
R =2y - B - BRID =0 — -

aﬂo oS =1 n(z Xiz) — (Z X; )2
0SSE n . A ”(ZX Vi) - (ZX )(Z Vi)
— Zz(yi _/Bo _ﬂlxi)(_xi) =0 — fB=—5 o -
@ﬂl Po. i =1 n(Z Xiz) — (Z X )2
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Simple Linear Regression
Fitting the Model: The Method of Least Squares

To derive the coefficient estimators, we minimize SSE WRT S, and p;.

A (i yi)(i Xiz)_(i Xi)(i X Yi) SSxx :Zn:(xi _7)2 :Zn:xiz _n(7)2

ﬂo - n n
n(Z Xiz) _(Z Xi)2 SSxy - Z(yi —y)(% —X) = in y; —NXy
TORSAETORIOND |
ﬂl — 1=1 . 2 1=1 . |:21 ,\ SSXy A A
H(ZX.)—(ZXJ =g B =y-BX
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Simple Linear Regression
Fitting the Model: The Method of Least Squares

To derive the coefficient estimators, we minimize SSE WRT S, and p;.

q: B O
#R code % Matlab code
# enter data % enter data
e Xic(112131415) X=[1,2,3,4,5]|;
yl_C(l’l’zizl,;l;)’E di ’ y=[111121214]';
. pl ot(_xl,v,x ab="Expen Iture;, X=[ones(5,1),x];
% y a.b— Reven-ue ). % fit regression
: # fit iegressmn line b=inv(X'*X)*X'*y
B0 - Im(y~x) % plot line
38 # make a scatter plot fi :
g , ' ’ igure;
plot(x,y,xlab="Expenditure’, scatter(x,y)
2 - o ylab=‘Revenue’) hold on ’
# p!ot a regiessmn_!mel folot(@(x) b(1,1)+b(2,1)*x)
o abline(Im(y~x),col="red") xlim([0.5,5.5])
- | | | | |
1 2 3 4 >

Advertising expenditure
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Simple Linear Regression
Model Assumptions

The probabillistic (linear) model relating y to x Is
y= :Bo T ﬂlx T &

Assumption 1 The mean of the probability distribution of ¢is 0. E(g)=0
Assumption 2 The variance of the probability distribution of is constant. var(g)=0"
Assumption 3 The probability distribution of ¢ is normal. &~ N(0,57)

Assumption 4 The errors associated with any two observations are independent.
f (e, ’gj): f(gi)f(gj)
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Simple Linear Regression
An Estimator of 62

The value of 62 is needed in statistical inference related to regression analysis.
Therefore, we need to estimate the value of .

The best estimate of 62 is s?.

5 SSE SSE \/87

S = = . S =
Degrees of Freedom n-2

SSE = " (Y, — B, — BX)* =SS,, - BSS,,
=1

S5, = (%, — ) =2y = n(7)’

We refer to s as the estimated standard error of the regression model.
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Simple Linear Regression
An Estimator of 62

Using R output to get the estimator of o7

n<-5
X <-¢(1,2,3,4,5)
y <-c¢(1,1,2,2,4)

Call:
Im(formula =y ~ X)

modeI:Im(y~x) Residueﬂs:l
summary(model)

# get fitted coefficients Coefficients:

yhat <- model$fitted.values (Intercent) Fetimate
b0 <- model$coefficients[1] X 0.7000
bl <- model$coefficients|2]

Signif. codes: 0 **

# sample variance
s2<- sum((y-yhat)**2)/(n-2)
S <- sgrt(s2)

Multiple R-squared:
F-statistic: 13.36 o

2 3

Std. Error t value
0.6351 -0.157
0.1915 3.656

*%7 0,001 “**’ 0.01

0.8167,
n 1 and 3 DF,

4

% Matlab code

n=>5;

x=1[1,2,3,4,5]';
v=1[1,1,2,2,4]";
X=[ones(5,1),x];
bhat=inv(X'*X)*X"*y
yvhat=X*bhat;
s2=sum((y-yhat).*2)/(n-2)
s=sqrt(s2)

5

4.000e-01 -3.000e-01 -5.551e-17 -7.000e-01 6.000e-01

Pr(>|tl)

0.8849
0.0354 *

“*7 0.05 ‘. 0.1 “ 71

Residual standard error: on 3 degrees of freedom
Adjusted R-squared:
p-value: 0.03535

0.7556
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Simple Linear Regression

# R Code

Assessing the Utility of the Model x=c(1,2,3,4,5)
y=c(1,1,2,2,4)
model=Im(y~x)

Hypothesized probabilistic model summary(model)

y = /3, +@X +&

Wish to test to see If §, Is statistically significant.

Hy: =0 2

—— Y= +¢
H: 5,70 Y=/
If the errors are normally distributed, e~N(0, 62), then S ~ N(8,,6°/SS,,) .
B ,31 — Hypothesized Value

s/ /SS,,

t

t= Ai—0  has a Student-t distribution with n-2 degrees of freedom.
s//SS,,
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Simple Linear Regression
Assessing the Utility of the Model

Test of Model Utility: Simple Linear Regression

Test statistic: t = 3,/s+ = B

B 3/1/SSzz

ONE-TAILED TESTS TWO-TAILED TEST
Hp:p1=0  Hp:p1=0  Hp:p1=0
H, B <0 H,:B1 >0 H,: 1 #0
Rejection region: I < —1, = £ ] > to)2
p-value: P(t < t.) P(t > t) 2P(t > t.) if 1 is positve
2P(t < t.) if t. is negative

Decision: Reject Hy if o > p-value, or, if test statistic falls in rejection region -

# R Code
x=c(1,2,3,4,5)
y=c(1,1,2,2,4)
model=Im(y~x)
summary(model)

—3.182

0 3.182
1=3.7

Rejection
region
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Simple Linear Regression
Assessing the Utility of the Model

A 100(1-a)% Confidence Interval for the Simple Linear
Regression Slope g,

A S
+ 1
ﬂl al?2 SS

XX

andt ,, Is based on a Student-t distribution with (n-2) df

# R Code

x=c(1,2,3,4,5)
y=c(1,1,2,2,4)
model=Im(y~x)
confint(model, level=0.95)
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Simple Linear Regression
The Coefficient of Correlation

Pearson product moment coefficient of correlation r is

SS

Xy

- NS

= Zn: x: —n(X)?

SS,, =Y yi —n(y)’
=1

SS Zn: XY — nW
=1

D.B. Rowe

(a) Positive r: y increases

as x increases

(b)

()

Negative r: y decreases
as x increases

r =1 a perfect positive linear
relationship between y and x

(d)

r =-1 a perfect negative linear
relationship between y and x

18
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Simple Linear Regression
The Coefficient of Correlation

Pearson product moment coefficient of correlation r is

Wish to test to see If p Is statistically significant.
Hy:p=0
H:p#0

If the errors are normally distributed, then

t=r Y02 2 has a Student-t distribution with n-2 degrees of freedom.

J1-r?
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Simple Linear Regression
The Coefficient of Correlation

Test of Hypothesis for Linear Correlation is

Test statistic: t = ry/n — 2/+/1 — 712

ONE-TAILED TESTS

Hp:p=0 Hop:p =0

H,:p <0 H,:p >0
Rejection region: P < —ly t > 1,
p-value: P(t <t.) P(t > t.)

TWO-TAILED TEST
Hp:p=0
Hy:p #0
] > a2
2P(t > t.) if 1. is positve
2P(t < t.) if 1. is negative

Decision: Reject Hy if o« > p-value or, if test statistic falls in rejection region
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Simple Linear Regression
The Coefficient of Determination

, 95, —SSE

SS,,
2 Explained sample variability
Total sample variability

I

# R Code

x=c(1,2,3,4,5)

y=c(1,1,2,2,4)
model=Im(y~x)
summary(model)Sr.squared
[1] 0.8166667

r> = Proportion of total sample variability of the y-values explained by the

Linear relationship between x and y.

Practical Interpretation of the Coefficient of Determination

About 100(r?)% of the sample variation in y (measured by the total sum of squares
of deviations of the sample y -values about their mean ¥ ) can be explained by (or

attributed to) using x to predict y in the straight-line model.
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Simple Linear Regression
Using the Model for Estimation and Prediction

A 100(1-a)% Confidence Interval for the Mean Value

Y
1 (x, — X)? of y for x=x; .1
n XX & |
—\2
. 1 (X,—X)
g+t .S, [—+— .|
n SS,,
2 =
A 100(1-a)% Prediction Interval for an Individual
VA Y f — 0 _/
. 1 (Xp —X) y Tor X=X,
O ~ — O +— 4+ #* % confidence
(y-Y) N SSxx _2 “4" 95% |imiftsd
4% - === 05% prediction
—\2 limits
A 1 (x,—X) 1 I B T
yita/zs\/l_l'ﬁ_l' pSS 0 1.0 2.0 3.0 40 5.0 6.0
XX

Range of x's in sample
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Simple Linear Regression

Homework:

Read Chapter 3

Problems # 2, 6 (use R, EX3 6), 19 (EX3_6, EX3 7),

26 (EX3 6, EX3 7), repeat example 3.2 including confidence interval and
hypothesis test (TIRES), 39 (EX3 6, EX3 7)

Submit at minimum one file with all your answers and another with your code.
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Simple Linear Regression

Questions?
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