

Chapter 3: Simple Linear Regression

Dr. Daniel B. Rowe
Professor of Computational Statistics
Department of Mathematical and Statistical Sciences
Marquette University

Simple Linear Regression

The Straight-Line Probabilistic Model

A First Order (Straight-Line) Model

$$y = \beta_0 + \beta_1 x + \varepsilon$$

where

y = **Dependent** variable (variable to be modeled-sometimes called the **response** variable)

x = **Independent** variable (variable used as **predictor** of y)

$$E(y|x) = \beta_0 + \beta_1 x$$

ε = (epsilon) = Random **error** component

β_0 = (beta zero) = **y -intercept** of the line

β_1 = (beta one) = **Slope** of the line.

Simple Linear Regression

The Straight-Line Probabilistic Model

$$y = \beta_0 + \beta_1 x + \varepsilon$$

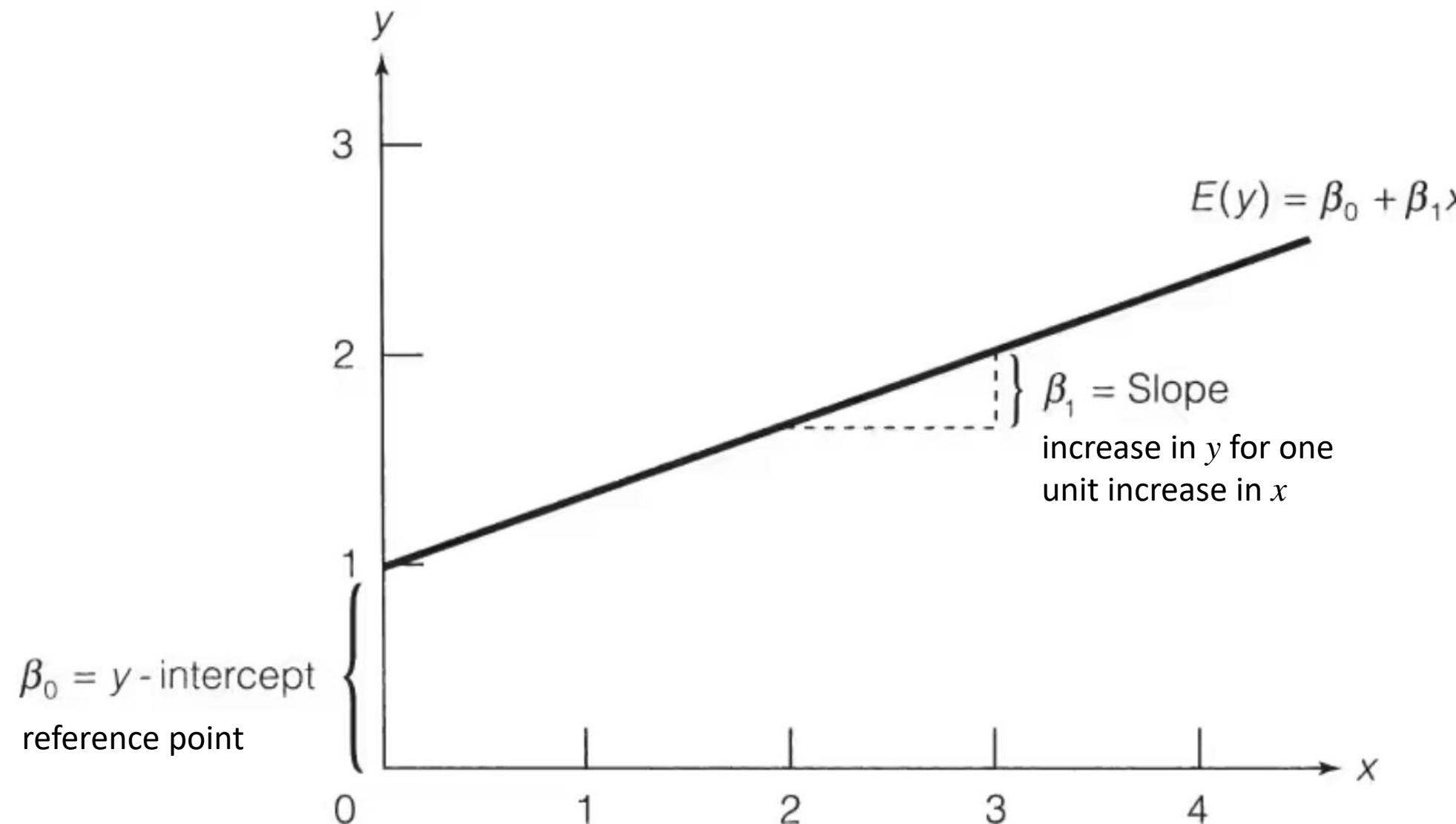
Steps in a Regression Analysis

- Step 1.** Hypothesize the form of the model for $E(y)$.
- Step 2.** Collect the sample data.
- Step 3.** Use the sample data to estimate unknown parameters in the model.
- Step 4.** Specify the probability distribution of the random error term, and estimate any unknown parameters of this distribution. Also, check the validity of each assumption made about the probability distribution.
- Step 5.** Statistically check the usefulness of the model.
- Step 6.** When satisfied that the model is useful, use it for prediction, estimation, and so on.

Simple Linear Regression

The Straight-Line Probabilistic Model

straight-line model is hypothesized



Simple Linear Regression

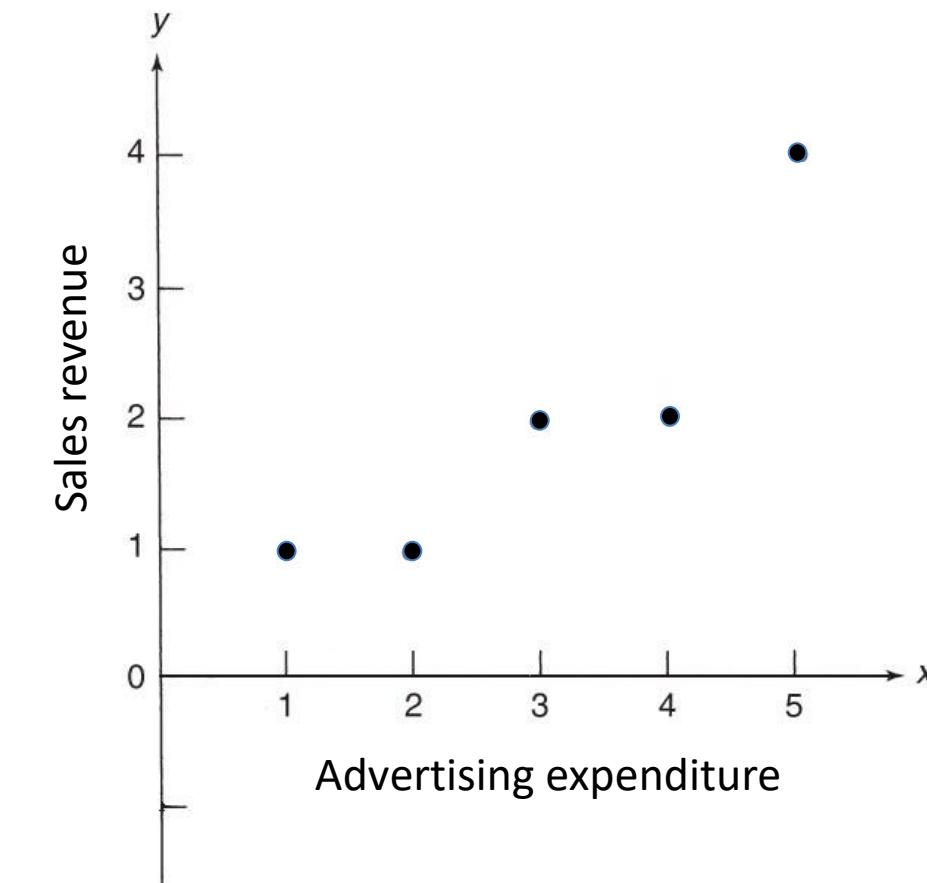
Fitting the Model: The Method of Least Squares

Example: The effect of Advertising on Revenue

Table 3.1

Appliance store data

Month	Advertising Expenditure x , hundreds of dollars	Sales Revenue y , thousands of dollars
1	1	1
2	2	1
3	3	2
4	4	2
5	5	4



The straight-line model is hypothesized to relate sales revenue y to advertising expenditure x . That is, $y = \beta_0 + \beta_1 x + \varepsilon$

Simple Linear Regression

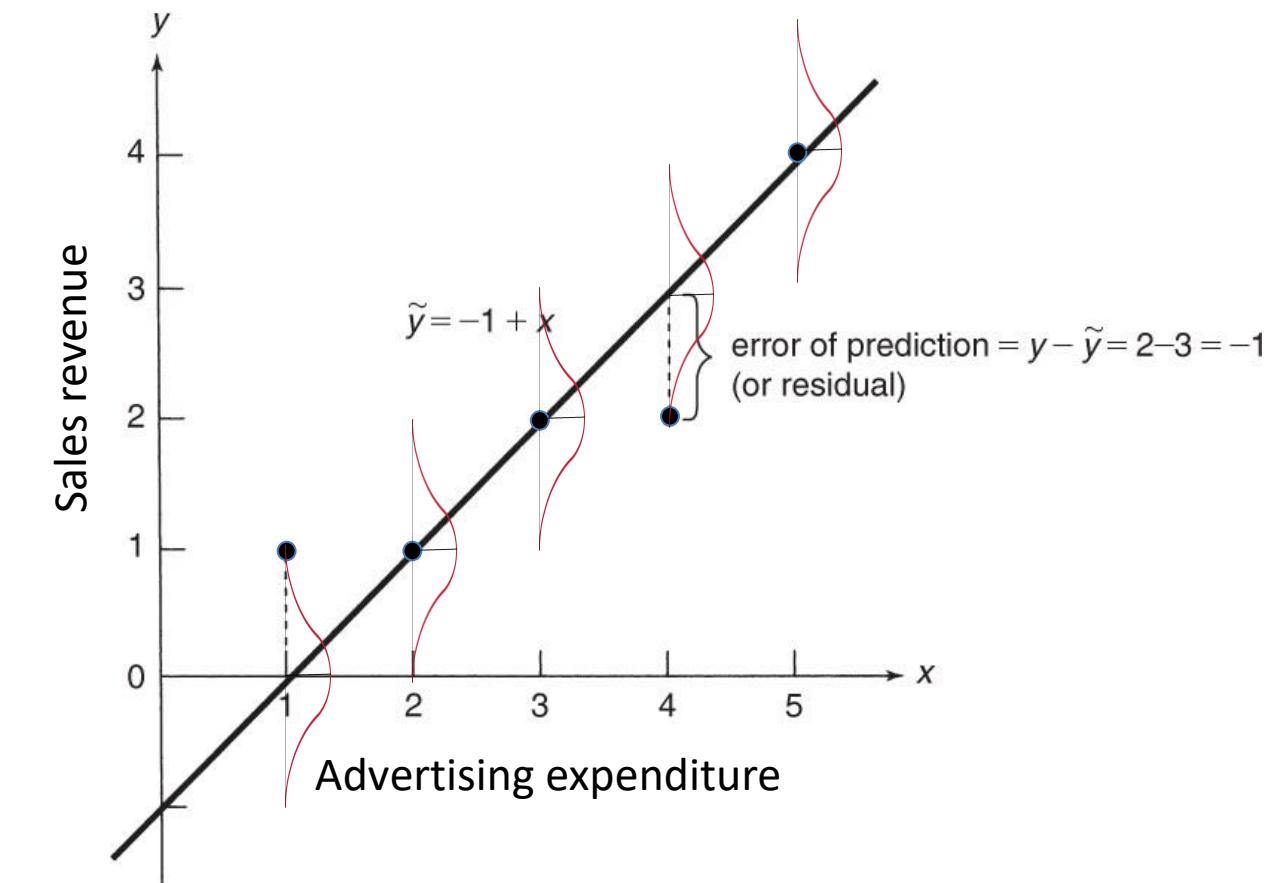
Fitting the Model: The Method of Least Squares

Example: The effect of Advertising on Revenue

Table 3.1

Appliance store data

Month	Advertising Expenditure x , hundreds of dollars	Sales Revenue y , thousands of dollars
1	1	1
2	2	1
3	3	2
4	4	2
5	5	4



The straight-line model is hypothesized to relate sales revenue y to advertising expenditure x . That is, $y = \beta_0 + \beta_1 x + \varepsilon$

Simple Linear Regression

Fitting the Model: The Method of Least Squares

The straight-line model for the response y in terms of x is

$$y = \beta_0 + \beta_1 x + \varepsilon$$

The line of means is

$$E(y | x) = \beta_0 + \beta_1 x$$

The fitted line, which we hope to find, is represented as

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

where

$\hat{\beta}_0$ and $\hat{\beta}_1$ are estimators of β_0 and β_1 respectively.

Simple Linear Regression

Fitting the Model: The Method of Least Squares

For a given data point, say, (x_i, y_i) , the observed value of y is y_i and the predicted value of y is obtained by substituting x_i into the prediction equation:

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

The deviation of the i th value of y from its predicted value, called the **i th residual**, is

$$y_i - \hat{y}_i = [y_i - (\hat{\beta}_0 + \hat{\beta}_1 x)]$$

Then the sum of squares of the deviations of the y -values about their predicted values (i.e., the **sum of squares of residuals**) for all of the n data points is

$$SSE = \sum_{i=1}^n [y_i - (\hat{\beta}_0 + \hat{\beta}_1 x)]^2$$

The quantities $\hat{\beta}_0$ and $\hat{\beta}_1$ that make the SSE a minimum are called the **least squares estimates** of the population parameters of β_0 and β_1 , and the prediction equation $\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$ is called the least squares line.

Simple Linear Regression

Fitting the Model: The Method of Least Squares

To derive the coefficient estimators, we minimize SSE WRT β_0 and β_1 .

$$SSE = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2$$

$$\frac{\partial SSE}{\partial \beta_0} \Bigg|_{\hat{\beta}_0, \hat{\beta}_1} = \sum_{i=1}^n 2(y_i - \beta_0 - \beta_1 x_i)(-1) = 0 \longrightarrow \hat{\beta}_0 = \frac{(\sum_{i=1}^n y_i)(\sum_{i=1}^n x_i^2) - (\sum_{i=1}^n x_i)(\sum_{i=1}^n x_i y_i)}{n(\sum_{i=1}^n x_i^2) - (\sum_{i=1}^n x_i)^2}$$

$$\frac{\partial SSE}{\partial \beta_1} \Bigg|_{\hat{\beta}_0, \hat{\beta}_1} = \sum_{i=1}^n 2(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)(-x_i) = 0 \longrightarrow \hat{\beta}_1 = \frac{n(\sum_{i=1}^n x_i y_i) - (\sum_{i=1}^n x_i)(\sum_{i=1}^n y_i)}{n(\sum_{i=1}^n x_i^2) - (\sum_{i=1}^n x_i)^2}$$

Simple Linear Regression

Fitting the Model: The Method of Least Squares

To derive the coefficient estimators, we minimize SSE WRT β_0 and β_1 .

$$\hat{\beta}_0 = \frac{\left(\sum_{i=1}^n y_i\right)\left(\sum_{i=1}^n x_i^2\right) - \left(\sum_{i=1}^n x_i\right)\left(\sum_{i=1}^n x_i y_i\right)}{n\left(\sum_{i=1}^n x_i^2\right) - \left(\sum_{i=1}^n x_i\right)^2}$$

$$\hat{\beta}_1 = \frac{n\left(\sum_{i=1}^n x_i y_i\right) - \left(\sum_{i=1}^n x_i\right)\left(\sum_{i=1}^n y_i\right)}{n\left(\sum_{i=1}^n x_i^2\right) - \left(\sum_{i=1}^n x_i\right)^2}$$

$$SS_{xx} = \sum_{i=1}^n (x_i - \bar{x})^2 = \sum_{i=1}^n x_i^2 - n(\bar{x})^2$$

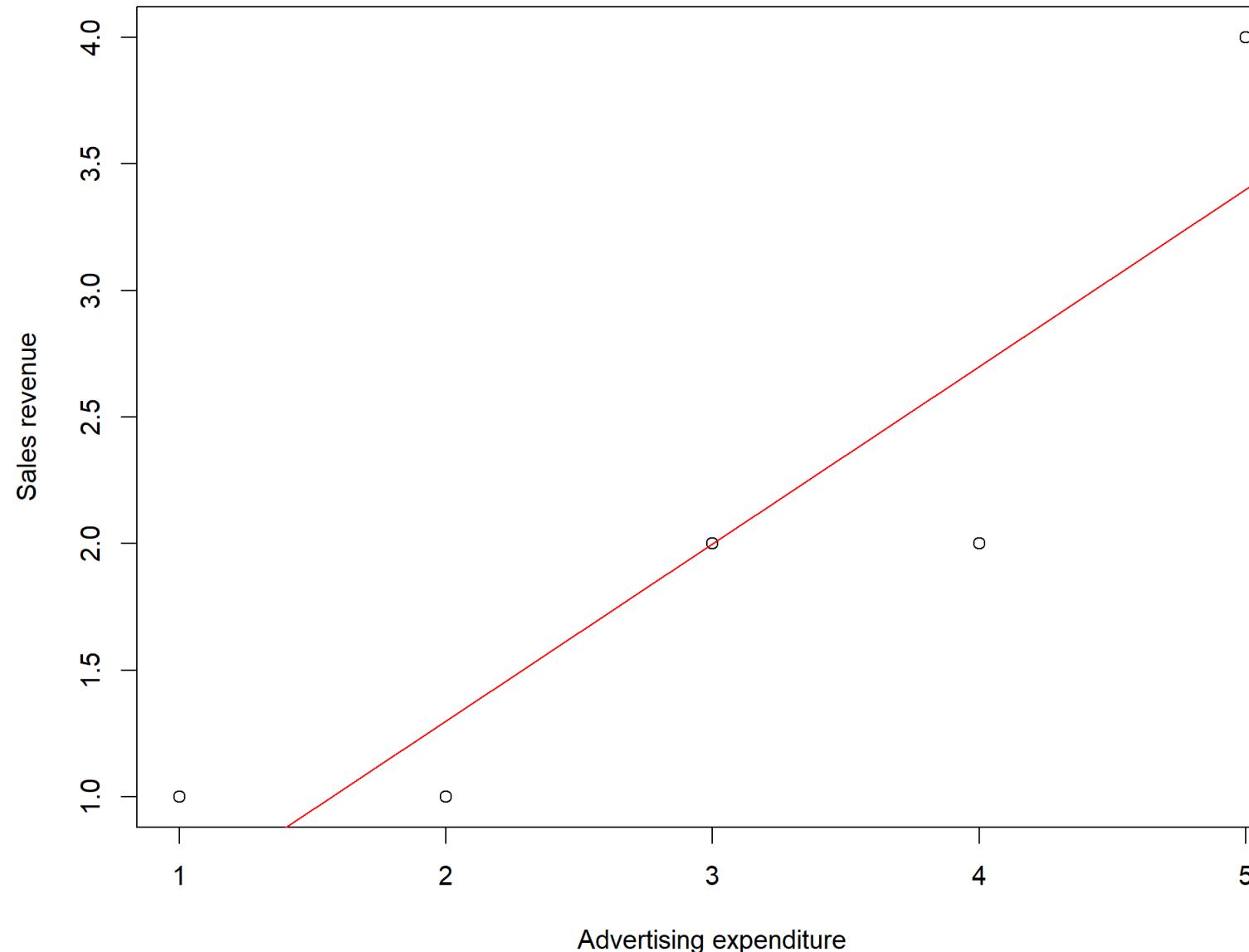
$$SS_{xy} = \sum_{i=1}^n (y_i - \bar{y})(x_i - \bar{x}) = \sum_{i=1}^n x_i y_i - n\bar{xy}$$

$$\hat{\beta}_1 = \frac{SS_{xy}}{SS_{xx}} \quad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

Simple Linear Regression

Fitting the Model: The Method of Least Squares

To derive the coefficient estimators, we minimize SSE WRT β_0 and β_1 .



```
# R code
# enter data
x=c(1,2,3,4,5)
y=c(1,1,2,2,4)
plot(x,y,xlab='Expenditure',
ylab='Revenue')
# fit regression line
lm(y~x)
# make a scatter plot
plot(x,y,xlab='Expenditure',
ylab='Revenue')
# plot a regression line
abline(lm(y~x),col='red')
```

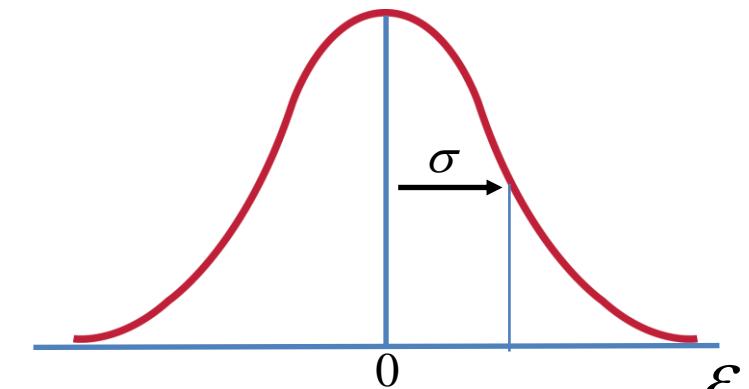
```
% Matlab code
% enter data
x=[1,2,3,4,5];
y=[1,1,2,2,4];
X=[ones(5,1),x];
% fit regression
b=inv(X'*X)*X'*y
% plot line
figure;
scatter(x,y)
hold on
fplot(@(x) b(1,1)+b(2,1)*x)
xlim([0.5,5.5])
```

Simple Linear Regression

Model Assumptions

The probabilistic (linear) model relating y to x is

$$y = \beta_0 + \beta_1 x + \varepsilon$$



Assumption 1 The mean of the probability distribution of ε is 0. $E(\varepsilon) = 0$

Assumption 2 The variance of the probability distribution of ε is constant. $\text{var}(\varepsilon) = \sigma^2$

Assumption 3 The probability distribution of ε is normal. $\varepsilon \sim N(0, \sigma^2)$

Assumption 4 The errors associated with any two observations are independent.

$$f(\varepsilon_i, \varepsilon_j) = f(\varepsilon_i)f(\varepsilon_j)$$

Simple Linear Regression

An Estimator of σ^2

The value of σ^2 is needed in statistical inference related to regression analysis. Therefore, we need to estimate the value of σ^2 .

The best estimate of σ^2 is s^2 .

$$s^2 = \frac{SSE}{\text{Degrees of Freedom}} = \frac{SSE}{n-2} \quad , \quad s = \sqrt{s^2}$$

$$SSE = \sum_{i=1}^n (y_i - \beta_0 - \beta_1 x_i)^2 = SS_{yy} - \hat{\beta}_1 SS_{xy}$$

$$SS_{yy} = \sum_{i=1}^n (y_i - \bar{y})^2 = \sum_{i=1}^n y_i^2 - n(\bar{y})^2$$

We refer to s as the **estimated standard error of the regression model**.

Simple Linear Regression

An Estimator of σ^2

Using R output to get the estimator of σ^2

```

n <- 5
x <- c(1,2,3,4,5)
y <- c(1,1,2,2,4)
model=lm(y~x)
summary(model)
# get fitted coefficients
yhat <- model$fitted.values
b0 <- model$coefficients[1]
b1 <- model$coefficients[2]
# sample variance
s2<- sum((y-yhat)**2)/(n-2)
s <- sqrt(s2)

```

Call:
`lm(formula = y ~ x)`

Residuals:

	1	2	3	4	5
	4.000e-01	-3.000e-01	-5.551e-17	-7.000e-01	6.000e-01

Coefficients:

	Estimate	Std. Error	t value	Pr(> t)
(Intercept)	-0.1000	0.6351	-0.157	0.8849
x	0.7000	0.1915	3.656	0.0354 *

Signif. codes:	0 ‘***’	0.001 ‘**’	0.01 ‘*’	0.05 ‘.’
	0.1 ‘ ’	1		

Residual standard error: 0.6055 on 3 degrees of freedom
 Multiple R-squared: 0.8167, Adjusted R-squared: 0.7556
 F-statistic: 13.36 on 1 and 3 DF, p-value: 0.03535

% Matlab code

```

n=5;
x = [1,2,3,4,5];
y = [1,1,2,2,4];
X=[ones(5,1),x];
bhat=inv(X'*X)*X'*y
yhat=X*bhat;
s2=sum((y-yhat).^2)/(n-2)
s=sqrt(s2)

```

Simple Linear Regression

Assessing the Utility of the Model

```
# R Code
x=c(1,2,3,4,5)
y=c(1,1,2,2,4)
model=lm(y~x)
summary(model)
```

Hypothesized probabilistic model

$$y = \beta_0 + \beta_1 x + \varepsilon$$

Wish to test to see if β_1 is statistically significant.

$$\begin{aligned} H_0: \beta_1 = 0 &\xrightarrow{?} y = \beta_0 + \varepsilon \\ H_a: \beta_1 \neq 0 & \end{aligned}$$

If the errors are normally distributed, $\varepsilon \sim N(0, \sigma^2)$, then $\hat{\beta}_1 \sim N(\beta_1, \sigma^2 / SS_{xx})$.

$$t = \frac{\hat{\beta}_1 - \text{Hypothesized Value}}{s / \sqrt{SS_{xx}}}$$

$t = \frac{\hat{\beta}_1 - 0}{s / \sqrt{SS_{xx}}}$ has a Student-t distribution with $n-2$ degrees of freedom.

Simple Linear Regression

Assessing the Utility of the Model

R Code

```
x=c(1,2,3,4,5)
y=c(1,1,2,2,4)
model=lm(y~x)
summary(model)
```

Test of Model Utility: Simple Linear Regression

Test statistic: $t = \hat{\beta}_1 / s_{\hat{\beta}_1} = \frac{\hat{\beta}_1}{s / \sqrt{SS_{xx}}}$

ONE-TAILED TESTS

$$\begin{array}{ll} H_0: \beta_1 = 0 & H_0: \beta_1 = 0 \\ H_a: \beta_1 < 0 & H_a: \beta_1 > 0 \end{array}$$

Rejection region:

$$t < -t_\alpha$$

$$t > t_\alpha$$

TWO-TAILED TEST

$$\begin{array}{ll} H_0: \beta_1 = 0 & H_0: \beta_1 = 0 \\ H_a: \beta_1 \neq 0 & H_a: \beta_1 \neq 0 \end{array}$$

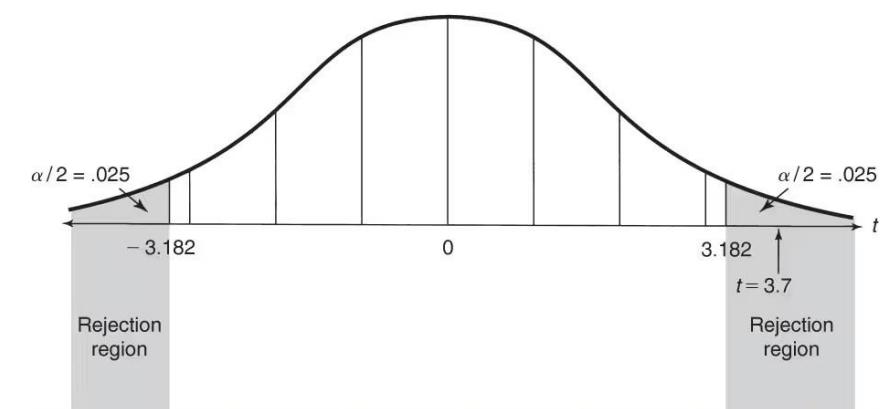
Rejection region:

$$P(t < t_c)$$

$$P(t > t_c)$$

$$\begin{array}{ll} |t| > t_{\alpha/2} & 2P(t > t_c) \text{ if } t_c \text{ is positive} \\ & 2P(t < t_c) \text{ if } t_c \text{ is negative} \end{array}$$

Decision: Reject H_0 if $\alpha > p\text{-value}$, or, if test statistic falls in rejection region



Simple Linear Regression

Assessing the Utility of the Model

A $100(1-\alpha)\%$ Confidence Interval for the Simple Linear Regression Slope β_1

$$\hat{\beta}_1 \pm t_{\alpha/2} \frac{s}{\sqrt{SS_{xx}}}$$

and $t_{\alpha/2}$ is based on a Student-t distribution with $(n-2)$ df

```
# R Code
x=c(1,2,3,4,5)
y=c(1,1,2,2,4)
model=lm(y~x)
confint(model, level=0.95)
```

Simple Linear Regression

The Coefficient of Correlation

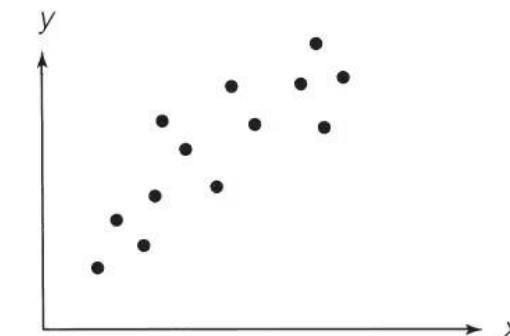
Pearson product moment coefficient of correlation r is

$$r = \frac{SS_{xy}}{\sqrt{SS_{xx}SS_{yy}}}$$

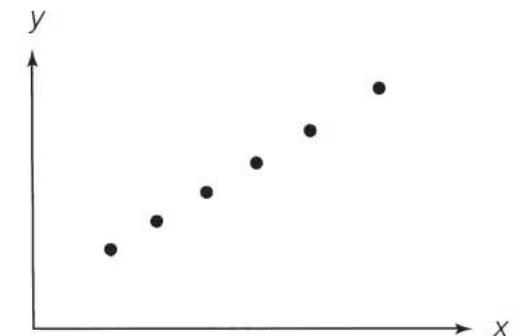
$$SS_{xx} = \sum_{i=1}^n x_i^2 - n(\bar{x})^2$$

$$SS_{yy} = \sum_{i=1}^n y_i^2 - n(\bar{y})^2$$

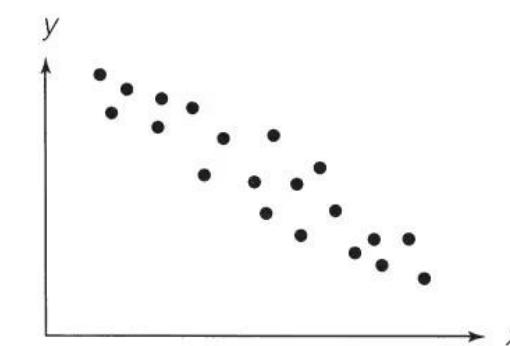
$$SS_{xy} = \sum_{i=1}^n x_i y_i - n\bar{x}\bar{y}$$



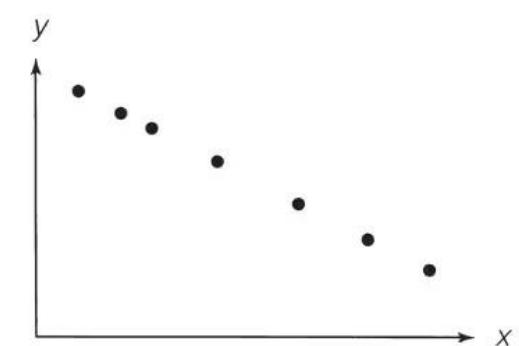
(a) Positive r : y increases as x increases



(b) $r = 1$: a perfect positive linear relationship between y and x



(c) Negative r : y decreases as x increases



(d) $r = -1$: a perfect negative linear relationship between y and x

Simple Linear Regression

The Coefficient of Correlation

Pearson product moment coefficient of correlation r is

Wish to test to see if ρ is statistically significant.

$$H_0: \rho = 0$$

$$H_a: \rho \neq 0$$

If the errors are normally distributed, then

$$t = r \frac{\sqrt{n-2}}{\sqrt{1-r^2}} \text{ has a Student-t distribution with } n-2 \text{ degrees of freedom.}$$

Simple Linear Regression

The Coefficient of Correlation

Test of Hypothesis for Linear Correlation is

Test statistic: $t = r\sqrt{n - 2}/\sqrt{1 - r^2}$

	ONE-TAILED TESTS	TWO-TAILED TEST
H_0 :	$\rho = 0$	$\rho = 0$
H_a :	$\rho < 0$	$\rho > 0$
H_a :	$\rho \neq 0$	$ t > t_{\alpha/2}$
<i>Rejection region:</i>	$t < -t_{\alpha}$	$t > t_{\alpha}$
<i>p-value:</i>	$P(t < t_c)$	$P(t > t_c)$ if t_c is positive $2P(t < t_c)$ if t_c is negative

Decision: Reject H_0 if $\alpha > p\text{-value}$ or, if test statistic falls in rejection region

Simple Linear Regression

The Coefficient of Determination

$$r^2 = \frac{SS_{yy} - SSE}{SS_{yy}}$$

$$r^2 = \frac{\text{Explained sample variability}}{\text{Total sample variability}}$$

r^2 = Proportion of total sample variability of the y -values explained by the Linear relationship between x and y .

Practical Interpretation of the Coefficient of Determination

About $100(r^2)\%$ of the sample variation in y (measured by the total sum of squares of deviations of the sample y -values about their mean \bar{y}) can be explained by (or attributed to) using x to predict y in the straight-line model.

```
# R Code
x=c(1,2,3,4,5)
y=c(1,1,2,2,4)
model=lm(y~x)
summary(model)$r.squared
[1] 0.8166667
```

Simple Linear Regression

Using the Model for Estimation and Prediction

A $100(1-\alpha)\%$ Confidence Interval for the Mean Value

$$\sigma_{\hat{y}} = \sigma \sqrt{\frac{1}{n} + \frac{(x_p - \bar{x})^2}{SS_{xx}}}$$

$$\hat{y} \pm t_{\alpha/2} s \sqrt{\frac{1}{n} + \frac{(x_p - \bar{x})^2}{SS_{xx}}}$$

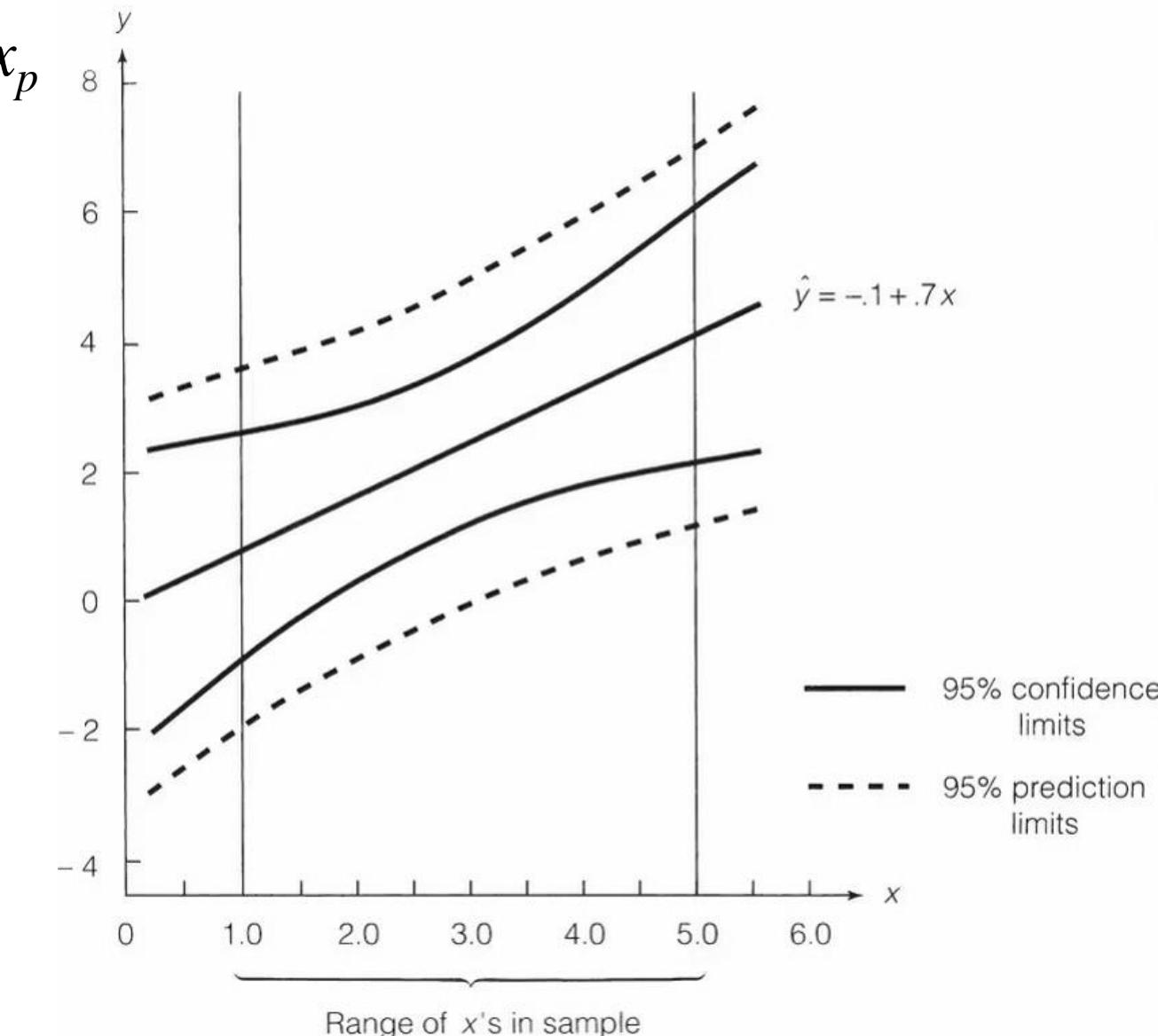
A $100(1-\alpha)\%$ Prediction Interval for an Individual

$$\sigma_{(y-\hat{y})} = \sigma \sqrt{1 + \frac{1}{n} + \frac{(x_p - \bar{x})^2}{SS_{xx}}}$$

$$\hat{y} \pm t_{\alpha/2} s \sqrt{1 + \frac{1}{n} + \frac{(x_p - \bar{x})^2}{SS_{xx}}}$$

of y for $x=x_p$

y for $x=x_p$



Simple Linear Regression

Homework:

Read Chapter 3

Problems # 2, 6 (use R, EX3_6), 19 (EX3_6, EX3_7),
26 (EX3_6, EX3_7), repeat example 3.2 including confidence interval and
hypothesis test (TIRES), 39 (EX3_6, EX3_7)

Submit at minimum one file with all your answers and another with your code.

Simple Linear Regression

Questions?