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Chapter 1: A Review of Basic Concepts B



A Review of Basic Concepts

Testing a Hypothesis About a Population Mean

1. Null Hypothesis (denoted H0): This is the hypothesis that is postulated to be true.

2. Alternative Hypothesis (denoted Ha): This hypothesis is counter to the null 

hypothesis and is usually the hypothesis that the researcher wants to support.

3. Test Statistic: Calculated from the sample data, this statistic functions as a 

  decision-maker.

4. Level of significance (denoted α): This is the probability of a Type I error (i.e., 

  the probability of rejecting H0 given that H0 is true).

5. Rejection Region: Values of the test statistic that lead the researcher to reject H0 

  and accept Ha.

6. p-Value: Also called the observed significance level, this is the probability of 

observing a value of the test statistic at least as contradictory to the null hypothesis 

  as the observed test statistic value, assuming the null hypothesis is true.

7. Conclusion: The decision to “reject” or “fail to reject” H0 based on the value of 

  the test statistic, α, the rejection region, and/or the p-value.
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A Review of Basic Concepts

Testing a Hypothesis About a Population Mean

Small-Sample Test of Hypothesis about μ

Test statistic:
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A Review of Basic Concepts

Inferences About the Difference Between Two Population Means

Small-Sample Confidence Interval for (μ1-μ2): Independent Samples

                                                ,

     is a “pooled” estimate of the common population variance and

 tα/2 is based on df=n1+n2-2

Assumptions:

Both sampled populations have distributions that are approximately normal.

The population variances are equal.

The samples are randomly and independently selected from the populations.
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A Review of Basic Concepts

Testing a Hypothesis About a Population Mean

Small-Sample Test of Hypothesis About (μ1-μ2):

Dependent Samples

Test statistic:                                 where                                           .

Decision: Reject H0 if α>p-value, or, if test statistic falls in rejection region
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A Review of Basic Concepts

Inferences About the Difference Between Two Population Means

Paired-Difference Confidence Interval for μd=μ1-μ2: Dependent Samples

                      ,

      is the sample mean difference

      is the sample standard deviation of differences and

 tα/2 is based on df=nd -1

Assumptions:

Population of differences has a normal distribution.

The samples differences are randomly selected from the population.

6D.B. Rowe

Intro to Regression & Classification

/2
d

d

d

s
y t

n


ds
dy



A Review of Basic Concepts

Testing a Hypothesis About a Population Mean

Paired Difference Test of Hypothesis for μd=μ1-μ2:

                                                                    Test statistic: 

Assumptions:

The differences are randomly selected from the population of differences.

The relative freq. distribution of the population of differences is normal.
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A Review of Basic Concepts

Comparing Two Population Variances 

H0:                       ,          usually k=1

Ha: 

Test Statistic:

                        (put larger sample variance in numerator)

Assumptions:

The two sampled populations are normally distributed.

The samples are randomly and independently selected from their respective 

populations.
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A Review of Basic Concepts

Comparing Two Population Variances

              has an F-distribution with 

              (n1-1) numerator df and 

              (n2-1) denominator df
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A Review of Basic Concepts

Comparing Two Population Variances

F-Test for Equal Population Variances: Independent Samples

Assumptions:

Both sampled populations are normally distributed.

The samples are random (within) and independent (between).
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A Review of Basic Concepts

Homework:

Read Chapter 1
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Chapter 2: Introduction to 

Regression Analysis



Introduction to Regression Analysis
Modeling a Response

Regression analysis is a branch of statistical methodology concerned with 

relating a response y to a set of independent, or predictor, variables

x1,…,xk.

Our goal is to build a model that mathematically describes the relationship 

between a value of our independent variable x and our dependent variable y.

and allow us to predict the value of y for a given value of x.

     y=E(y)+Random Error   

Random Error is a random draw from a normal distribution with mean 0 

and variance σ2.
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Introduction to Regression Analysis
Modeling a Response

At each point along the curve, observations have additive normal error ε.  

Linear Regression                                             Non-Linear Regression
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Introduction to Regression Analysis
Overview of Regression Analysis

If we have a “smooth” function E(y|x)=f(x) that depends on a single independent 

variable, then we can represent it with a Taylor series expansion around 0 as

Linear in the parameters regression.
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Introduction to Regression Analysis
Overview of Regression Analysis

If we have a “smooth” function E(y|x)=f(x) that depends on a single independent 

variable, then we can represent it with a Taylor series expansion around 0 as

and if E(y|x1,x2) depends on two independent variables, then

Linear in the parameters regression.
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Introduction to Regression Analysis
Overview of Regression Analysis

Example: A property appraiser might like to relate percentage price increase y 

of residential properties to the two quantitative independent variables x1, square 

footage of heated space, and x2, lot size.

This model could be represented by a response 

surface that traces the mean percentage price 

increase E(y |x1,x2) for various combinations of 

𝑥1 and 𝑥2.
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Introduction to Regression Analysis
Overview of Regression Analysis

Regression Modeling: Six-Step Procedure

1. Hypothesize the form of the model for E(y).

2. Collect the sample data.

3. Use the sample data to estimate unknown parameters in the model.

4. Specify the probability distribution of the random error term, and estimate any 

unknown parameters of this distribution.

5. Statistically check the usefulness of the model.

6. Check the validity of the assumptions on the random error term, and make model 

modifications if necessary.

7. When satisfied that the model is useful, and assumptions are met, use the model to 

make inferences, i.e., parameter interpretation, prediction, estimation, etc.
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Introduction to Regression Analysis
Collecting the Data for Regression

Definition 2.3

If the values of the independent variables (x’s) in regression are uncontrolled 

(i.e., not set in advance before the value of y is observed) but are measured without 

error, the data are observational.
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Introduction to Regression Analysis
Collecting the Data for Regression

Definition 2.4

If the values of the independent variables (x’s) in 

regression are controlled using a designed experiment

(i.e., set in advance before the value of y is observed), 

the  data are experimental.

Think of x as dial settings for your science experiment. Every time you fix an x, 

you run the experiment to get a y. In regression, x is fixed and known.
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Introduction to Regression Analysis
Collecting the Data for Regression
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% R code
install.packages("plotly")
library(plotly)

print("Temperature x1, Pressure x2, and Impurity y Data")

% enter x1 and x2 and y dataset
x1 <- c(100,100,100,125,125,125,150,150,150) 
x2 <- c(50,60,70,50,60,70,50,60,70) 
y  <- c(2.7,2.4,2.9,2.6,3.1,3.0,1.5,1.9,2.2) 
x3=x1*x1;
x4=x2*x2;
x5=x1*x2;

# Fit linear model
lm.model_y <- lm(y ~ x1 + x2 + x3 + x4 + x5)
# get fitted coefficients
yhat <- lm.model_y$fitted.values
b0   <- lm.model_y$coefficients[1]
b1   <- lm.model_y$coefficients[2]
b2   <- lm.model_y$coefficients[3]
b3   <- lm.model_y$coefficients[4]
b4   <- lm.model_y$coefficients[5]
b5   <- lm.model_y$coefficients[6]
lm.model_y$coefficients

% Create surface plot
xx1 <- seq(90, 160, length.out = 100)
xx2 <- seq(40,   80, length.out = 100)
f <- function(xx1, xx2) {b0+b1*xx1+b2*xx2+b3*xx1*xx1+b4*xx2*xx2+b5*xx1*xx2}
fig <- plot_ly(x = xx1, y = xx2, z = outer(xx1, xx2, f),type = "surface",
               colorscale = list(c(0, 1), c("red", "yellow")))
fig <- fig %>% 
  layout(scene = list(xaxis = list(title = 'X1'),yaxis = list(title = 'X2')
                      ,zaxis = list(title = 'y')))
fig

% Matlab code
x1 =[100,100,100,125,125,125,150,150,150]'; 
x2 =[50,60,70,50,60,70,50,60,70]';
y =[2.7,2.4,2.9,2.6,3.1,3.0,1.5,1.9,2.2]';

n=length(y);
X=[ones(n,1),x1,x2,x1.*x1,x2.*x2,x1.*x2];
bhat=inv(X'*X)*X'*y

fxy = @(xx1,xx2) bhat(1,1)+bhat(2,1)*xx1+bhat(3,1)*xx2+...
bhat(4,1)*xx1.^2+bhat(5,1)*xx2.^2+bhat(6,1)*xx1.*xx2;
figure;
fsurf(fxy,[90,160,40,80]), xlabel('x_1'),ylabel('x_2'),zlabel('y’)
hold on, scatter3(x1,x2,y,'filled')



Introduction to Regression Analysis

Example: We can use regression to fit a surface to (x,y) data.
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Introduction to Regression Analysis 

Example: We can use regression to fit a surface to (x,y) data.
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x1 x2 y

-1 -1 86.0753

-1 -0.7143 91.5249

-1 -0.4286 86.1966

-1 -0.1429 95.2958

-1 0.1429 97.0661

-1 0.4286 96.6703

-1 0.7143 101.2757

-1 1 105.6852

-0.7143 -1 93.5854

-0.7143 -0.7143 94.8246

-0.7143 -0.4286 89.4431

-0.7143 -0.1429 101.0698

-0.7143 0.1429 99.308

-0.7143 0.4286 100.5882

-0.7143 0.7143 105.0009

-0.7143 1 106.0186

-0.4286 -1 87.6089

-0.4286 -0.7143 93.6937

-0.4286 -0.4286 96.3895

-0.4286 -0.1429 99.263

-0.4286 0.1429 100.6287

-0.4286 0.4286 99.7279

-0.4286 0.7143 106.4345

-0.4286 1 111.1176

-0.1429 -1 90.2635

-0.1429 -0.7143 94.2122

-0.1429 -0.4286 96.4538

-0.1429 -0.1429 97.2503

-0.1429 0.1429 101.302

-0.1429 0.4286 101.9969

-0.1429 0.7143 108.2054

-0.1429 1 106.9916

0.1429 -1 88.5765

0.1429 -0.7143 91.9524

0.1429 -0.4286 90.54

0.1429 -0.1429 102.1625

0.1429 0.1429 102.7932

0.1429 0.4286 103.4901

0.1429 0.7143 110.5977

0.1429 1 107.2913

0.4286 -1 91.9384

0.4286 -0.7143 94.5171

0.4286 -0.4286 98.4956

0.4286 -0.1429 101.34

0.4286 0.1429 101.8417

0.4286 0.4286 106.3685

0.4286 0.7143 108.956

0.4286 1 113.3983

0.7143 -1 95.758

0.7143 -0.7143 98.6471

0.7143 -0.4286 97.5584

0.7143 -0.1429 102.2976

0.7143 0.1429 102.5718

0.7143 0.4286 105.6301

0.7143 0.7143 110.7006

0.7143 1 116.6367

1 -1 93.4607

1 -0.7143 98.5999

1 -0.4286 100.2631

1 -0.1429 105.8061

1 0.1429 104.2504

1 0.4286 109.3508

1 0.7143 113.2479

1 1 117.2012



Introduction to Regression Analysis 

Example: We can use regression to fit a surface to (x,y) data.

24D.B. Rowe

Observed Estimated True

1ˆ ( ' ) 'X X X y −=

y ˆX X

y X = +

Intro to Regression & Classification



Introduction to Regression Analysis

Homework:

Read Chapter 2
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Introduction to Regression Analysis

 Questions?
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