MATH 2780 Chapter 4 Worksheet

Summary

General Form of the Multiple Regression Model:

y =po+ fix1 +...+ Pt e

y = Dependent variable (variable to be modeled-sometimes called the response variable)
X1,...,.Xk = Independent variables (variables used as predictors of y)

EQxs) = pot fix1 +... + Bixx

€ = Random error component
bo = y-intercept of the line
i = determine the contribution of the independent variable x;.

Note: The x,...,x; may represent higher-order terms (e.g., x2=x2) or terms or predictors (0/1).
Coefficient and Residual Variance Estimation

Y,\:Xﬁ+E —yl_ 1 Xp Xy o an_ _ﬁo- _‘91_
ﬂ:(xlx)_lxly Y, 1 Xy Xy o Xy By &
SZZ(y_xﬂ)'(y_Xﬁ)Y: Ys X = 1 X3 X23 o Xy 1ﬂ: ﬂz E= &y
n-k-1 : . : : : :
MSE :SZ’ S:\/372 _yn_ _l Xln X2n an_ _ﬂk_ _gn_

Assumptions About the Random Error &:
1. For any given xi,....,xs, the error ¢ has a normal distribution with, £(¢)=0 and var(¢)=c>.

2. The random errors are independent, f{e; &)=f(:)f(¢;). Normal only needed for Cls and HTs.
Model Test: Ho: f1=0>=...=f;=0 vs. H,: At least one 5#0. '

_ (SS,,—SSE)/k _ Mean Square Model _ R?/k
SSE/(n—k-1) MSE 1-R%)/(n—k-1)
Reject if [>F, okn-k-1 0T a>p-value=P(F >F a,k,n-k-l)- g F‘ ocion regen
Individual Coefficient Test: { = ﬂl / Sf3'i , S[ﬂ =S i » Wiiis the i diagonal of W=(X'X)"'.

One Tailed: Ho: £>0 vs. Ha: ;<0 w/ RR t<-ty k-1 Or a>p-value=P(t<-top-r-1),
One Tailed: Ho: £i<0 vs. Hy: ;>0 w/ RR >ty 1 OF o0>p-value=P(t>t, k1),

Two Tailed: Ho: £;=0 vs. H,: fi#0 w/ RR |t[>tu2 k1 OF a>p-value=2P(|t|>t,n-k-1)- L
Coefficient Confidence Interval ‘
Bt ta/Z,n—k—ls L, s’=MSE and W is the i" diagonal element of W=(X'X)"".

Coefficient of determination R? and adjusted coefficient of determination R?,. Fit quality.
R?=1-SSE/SS,,, 0<R*<1, SSE=>(y,—¥)*, SS,=> (y;—V)

RZ =1—[SSE / (n—k -D)J/[SS,, / (N—1]=1-[(n-1)/(n -k -D]L-R?), R?<R?
Estimated mean function at xo: Y(X;) = XOB, SE(Y,,)= \/MSE(XO(X X))

Mean function confidence interval at xo: Cl = 9(x0) + ta/z,n_k_lsE(on)

Mean function prediction interval at x,: Pl = )‘/(xo) + ta/2,n7k71 . \/MSE + (SE()?XO ))2

F-Test for Comparing Nested Models
Reduced Model: E(y|xs) = fot fix1 +... + fexg
Complete Model: E(y|x’s) = fot fixi +... + PoXg T PariXgr1 +... + Pixk
Ho: fgr1=...= =0 vs. H,: At least one tested f; # 0.
F_ (SSE; —SSE.)/(k—9)

SSE. /(n—k—1)

, Reject if F>F g k101 0>p-value=P(F>Fo kg n-1)-
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Example: Price y for clocks depends on their age x; and the number of bidders x». y
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a) Estimate the regression coefficients. Analysis of Variance %
ﬂ _ (X 'YX )—1 X'y Souce  DF  AdjSS AdjMs [F-Value P-Value |137|
Regression 2 4283063 2141531 | 12019 0000 |111
Error 29 516727 17818 117
Total 31 4799790 [ as|
b) Compute the MSE. 187|
A A 137
2 ==
MSE =s =(y— Xﬂ)'(y— Xﬂ)/(n—k—l) Model Summary 111]
S R-sq R-sq(adj 1153
. . 133485 89.23% 88.49% £
c) Test for significance of the model. [117]
F= [(SSW —SSE) /K]/[SSE/ (n—k —=1)] Coefficients | 194/
Term Coef SECoef T-Value P-Value %
Constant -1339 174 -7.70 0.000 1
d) Form confidence intervals for each coefficient. AGE 12741 0905 1408 0000
A NUMBIDS  85.95 873 9.85 0.000
ﬂi * talz,n—k—ls\/ “ iii
Regression Equation
. . . . PRICE = -1339 + 12.741 AGE + 85.95 NUMBIDS
e) Compute the coefficient of determination and adjusted.
2 _ 2 _ 2
R®=1-SSE/SS,,, R?=1-[(n-1)/(n—k -1)]1-R?)
f) Compute the mean function at xo=[1,150,10].
y(X ):X,B Source Sq F Value| Pr>F
0 0 'Model 2| 4283063| 2141531 120.19|<.0001|
Emorl | |
g) Compute the mean function Cl at xo. SOSCIonTgiN 91| 4790790 » »
N N EMSENI|133148467  R-Square | 0.8923]
Cl = Y(Xo) ita,z,n_k_lsE(yxo) Dependent Mean | 1326.87500 Adj R-Sq | 0.8849
Coeff Var 10.06008| i
. Parameter Estimates
h) Compute the mean function PI at xo. B Standard
A N 2 Variable Error|t Value Pr > |t|
Pl =9(%X) £t 41|/ MSE + (SE(J, ) 17380047 _~7.70 <0001
: %o 0.90474| 14.08| <.0001
8.72852] 9.85 <.0001|

i) Test Ho: f2=0 vs. H,: 2 # 0.
= (SSE; —SSE;)/(k—09)
SSE, / (n—k —1)
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# R Code

# read data

mydata <- read.delim("PriceAgeBid-
ders.txt",header = FALSE)

# parse out variables

n <- nrow(mydata)

k <- ncol(mydata)-1

x1 <- c(mydata[,1]) #Age

X2 <- c(mydata[,2]) #Bidders

y <-c(mydatal,3]) #Price

c <-rep(1,n) #Ones

X <- cbind(c,x1,x2) #design matrix

# estimate coefficients
b <- solve(t(X)%*%X)%*%t(X)%* %y

# residual analysis

e <- y-X%*%b

hist(e)

mean(e) # 8.867573e-12
SSE <- t(e)%*%e

s2 <- SSE/(n-k-1) # 17818.16
MSE <-s2;

s <-sqrt(s2) #3.4847

# perform F test for model

alph <- 0.05;

SSyy <- sum(y”2)-(sum(y))*2/n

Fstat<- ((SSyy-SSE)/k)/(SSE/(n-k-1))
Fcrit<- gf(alph,k, n-k-1, lower.tail=FALSE)
pval <- pf(Fstat,k,n-k-1, lower.tail=FALSE)

# individual t-tests
W <-solve(t(X)%*%X)

tb0 <-b[1]/sqrt(MSE*WI[1,1])
tbl <-b[2]/sqrt(MSE*W]2,2])
th2 <-b[3]/sqrt(MSE*W]3,3])
terit<-qt(1-alph,n-k-1)

pb0 <- 2*pt(abs(tb0),n-k-1,lower.tail=FALSE)
pbl <-2*pt(abs(tb1),n-k-1,lower.tail=FALSE)
pb2 <-2*pt(abs(tb2),n-k-1,lower.tail=FALSE)

# confidence intervals

ClbOL <- b[1]-tcrit*sqrt(MSE*W[1,1])
ClbOU <- b[1]+tcrit*sqrt(MSE*W/[1,1])
Clb1L <- b[2]-tcrit*sqrt(MSE*W[2,2])
Clb1U <- b[2]+tcrit*sqrt(MSE*W[2,2])
Clb2L <- b[3]-tcrit*sqrt(MSE*W][3,3])
Clb2U <- b[3]+tcrit*sqrt(MSE*W/[3,3])

# compute the coefficients of determination
R2=1-SSE/SSyy
R2a=1-(n-1)/(n-k-1)*(1-R2)

# mean function at x0
x0 <-c(1,150,10)
yhatx0<-x0%*%b

tx0 <- matrix(t(x0))

# mean function confidence interval at x0
SEXO0 <- sqrt(MSE%*%x0%*%solve(t(X)%*%X)%*%tx0)

CIxOL=yhatx0-tcrit*SEx0
CIxOU=yhatx0+tcrit*SEx0

# mean function prediction interval at x0
PIxOL=yhatx0-tcrit*sqrt(MSE+SEx0*SEx0)
PIxOU=yhatx0+tcrit*sqrt(MSE+SEx0*SEx0)

# test if beta2=0

XR<-X[,1:2]
bR<-solve(t(XR)%*%XR)%*%t(XR)%* %y
SSER <- t(y-XR%*%bR)%*%(y-XR%*%bR)
SSEC <- SSE

Fstat2<- ((SSER-SSEC)/(k-1))/(SSEC/(n-k-1))
Fcrit2<- gf(alph,k-1,n-k-1,lower.tail=FALSE)
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% Matlab Code % coefficients of determination
% load data R2=1-SSE/SSyy
load PriceAgeBidders.txt R2a=1-(n-1)/(n-k-1)*(1-R2)
y =PriceAgeBidders(:,3);
n=size(y,1); % mean function at x©
x1=PriceAgeBidders(:,1); x0=[1,150,10]
x2=PriceAgeBidders(:,2); yhatxe=X*b
X=[ones(n,1),x1,x2];
k=size(X,2)-1; % mean function CI at x@

SEx@=sqrt (MSE*x0*inv(X'*X)*x0")
% estimate coefficients CIx@L=yhatx@-tcrit*SEx0
b=inv(X"*X)*X'*y CIx@U=yhatx@+tcrit*SEx0
% residual analysis % mean function PI at x@
e=y-X*b; PIxOL=yhatx@-tcrit*sqrt(MSE+SEx0"2)
figure; PIx@U=yhatx@+tcrit*sqrt(MSE+SEx0"2)
histogram(e)
mean(e) %-1.6698e-12 % test if beta2=0
SSE=e'*e; XR=X(:,1:2);
s2=SSE/(n-k-1) % 1.7818e+04 bR=inv(XR'*XR)*XR " *y
MSE=s2; SSER=(y-XR*bR) ' *(y-XR*bR)
s=sqrt(s2) % 133.4847 SSEC=SSE

Fstat2=( (SSER-SSEC)/ (k-
% perform F test for model 1))/(SSEC/(n-k-1))
alph=0.05; Fcrit2=finv(1-alph,k-1,n-k-1)

SSyy=sum(y.”2)-(sum(y))"*2/n;
Fstat=((SSyy-SSE)/k)/(SSE/(n-k-1))
Fcrit= finv(1-alph,k,n-k-1)
pval = fcdf(Fcrit,k,n-k-1, "upper')

% individual t-tests

W =inv(X'*X)

tb® =b(1,1)/sqrt(MSE*W(1,1))
tbl =b(2,1)/sqrt(MSE*W(2,2))
tb2 =b(3,1)/sqrt(MSE*W(3,3))
tcrit=tinv(1-alph,n-k-1)

pbo =2*tcdf(abs(tb®),n-k-1, 'upper')
pbl =2*tcdf(abs(tbl),n-k-1, 'upper')
pbl =2*tcdf(abs(tb2),n-k-1, "upper")

% confidence intervals

CIbOL = b(1,1)-tcrit*sqrt(MSE*W(1,1))
CIboU = b(1,1)+tcrit*sqrt(MSE*W(1,1))
CIblL = b(2,1)-tcrit*sqrt(MSE*W(2,2))
CIblU = b(2,1)+tcrit*sqrt(MSE*W(2,2))
CIb2L = b(3,1)-tcrit*sqrt(MSE*W(3,3))
CIb2U = b(3,1)+tcrit*sqrt(MSE*W(3,3))




