Chapter 5: Principles of Model Building

Dr. Daniel B. Rowe **Professor of Computational Statistics Department of Mathematical and Statistical Sciences** Marquette University

Copyright D.B. Rowe

Principles of Model Building Introduction: Why Model Building Is Important

Model Building: writing a model that will provide a good fit to a set of data and that will give good estimates of the mean value of y and good predictions of future values of y for given values of the independent variables

In this chapter, is discussed the most difficult part of a multiple regression analysis: the formulation of a good model for E(y). where

Principles of Model Building The Two Types of Independent Variables: Quantitative and Qualitative

A quantitative variable is one that assumes numerical values corresponding to the points on a line.

An independent variable that is not quantitative, that is, one that is categorical in nature, is called **qualitative**.

The different values of an independent variable used in regression are called its **levels**.

Intro to Regression & Classification **Principles of Model Building** Models with a Single Quantitative Independent Variable

We often only have observations in a certain interval of the independent variables x and not over the full interval of possible independent variables x.

D.B. Rowe

β_0 : y-intercept; the value of

β_1 : Slope of the line; change in for a 1-unit increase in x

Principles of Model Building Models with a Single Quantitative Independent Variable

We often only have observations in a certain interval of the independent variables x and not over the full interval of possible independent variables x. E(y)

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \varepsilon$$

 β_0 : y-intercept; the value of when x=0

 β_1 : Shift parameter; changing the value of β_1 shifts the parabola to the right or left (increasing the value of β_1 causes the parabola to shift to the right)

 β_2 : Rate of curvature

Principles of Model Building Models with a Single Quantitative Independent Variable

We often only have observations in a certain interval of the independent variables x and not over the full interval of possible independent variables x.

D.B. Rowe

$$y = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \varepsilon$$

 β_0 : y-intercept; the value of when x=0

 β_1 : Shift parameter (shifts the parabola to the right or left on the x axis)

 β_2 : Rate of curvature

 β_3 : The magnitude of β_3 controls the rate of reversal of curvature for the polynomial

Principles of Model Building First-Order Models with Two or More Quantitative Independent Variables

First-Order Model in k Quantitative Independent Variables

$$E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + ... + \beta_k x_k$$

where β_0, \ldots, β_k are unknown parameters that must be estimated. Interpretation of model parameters β_0 : y-intercept of (k+1)-dimensional surface; the value of E(y) when $x_1 = \dots = x_k = 0$

 β_1 : Change in E(y) for a 1-unit increase in x_1 , when x_2, x_3, \dots, x_k are held fixed.

 β_2 : Change in E(y) for a 1-unit increase in x_2 , when x_1, x_3, \dots, x_k are held fixed. β_{k} : Change in E(y) for a 1-unit increase in x_{k} , when $x_{1}, x_{2}, \dots, x_{k-1}$ are held fixed.

Principles of Model Building Second-Order Models with Two or More Quantitative Independent Variables

Second-order term accounts for interaction between two variables

 $E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$

model traces a twisted plane in a three-dimensional space.

The second-order term $\beta_3 x_1, x_2$ is called the **interaction term**, and it permits the contour lines to be nonparallel.

twisted plane

Principles of Model Building Second-Order Models with Two or More Quantitative Independent Variables

Interaction (Second-Order) Model with Two Independent Variables

 $E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2$

Interpretation of Model Parameters β_0 : y-intercept; the value of E(y) when $x_1 = x_2 = 0$

 β_1 and β_2 : Changing β_1 and β_2 causes the surface to shift along the x_1 and x_2 axes

 β_3 : Controls the rate of twist in the ruled surface

 $\beta_1 + \beta_3 x_2$: Change in E(y) for a 1-unit increase in x_1 , when x_2 is held fixed

 $\beta_2 + \beta_3 x_1$: Change in E(y) for a 1-unit increase in x_2 , when x_1 is held fixed

Principles of Model Building Second-Order Models with Two or More Quantitative Independent Variables

Interaction (Second-Order) Model with Two Independent Variables

$$E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \beta_4 x_1^2 + \beta_5 x_2^2$$

Interpretation of Model Parameters β_0 : y-intercept; the value of E(y) when $x_1 = x_2 = 0$

 β_1 and β_2 : Changing β_1 and β_2 causes the surface to shift along the x_1 and x_2 axes

 β_3 : The value of β_3 controls the surface rotation

 β_4 and β_5 : Signs and values of these parameters control the type of surfaces the rate of curvature

Principles of Model Building Models with One Qualitative Independent Variable

Example: There are three types: a petroleum-based fuel (P), a coal-based fuel (C), and a blended fuel (B).

We need dummy (indicator) variables for the model. $E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$

	1 if fuel P is used	Fuel Type	x_1	<i>x</i> ₂	Mean R
$x_1 = \{$	0 <i>if not</i>	Blended (B)	0	0	$\beta_0 = \mu_{ m E}$
$x_2 = \begin{cases} \\ \\ \end{cases}$	$\int 1$ if fuel C is used	Petroleum (P)	1	0	$\beta_0 + \beta_1$
		Coal (C)	0	1	$\beta_0 + \beta_2$
	0 if not				

 β_0 : the mean performance level (y) when fuel B is used.

 β_1 : the difference in the mean performance for fuels P and B.

 β_2 : the difference in the mean performance for fuels C and B.

D.B. Rowe

Response, E(y)

- $= \mu_{\rm P}$
- $= \mu_{\rm C}$

 $\beta_1 = \mu_P - \beta_0$

 $\beta_2 = \mu_C - \beta_0$

Principles of Model Building Models with Both Quantitative and Qualitative Independent Variables

Example: Performance of a diesel engine as a function fuel type at levels F_1, F_2 , and F_3 , and one quantitative independent variable engine speed in RPM.

If we were to assume that fuel type doesn't matter, then the second-order model would likely provide a good approximation to E(y):

$$E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2$$

where x_1 is speed in RPM.

Principles of Model Building Models with Both Quantitative and Qualitative Independent Variables

Example: Performance of a diesel engine as a function fuel type at levels F_1, F_2 , and F_3 , and one quantitative independent variable engine speed in RPM.

If we add fuel type to engine speed, and set F_1 as the base level and add F_2 and F_3 then the second-order model would likely provide a good approximation to E(y):

$$E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + \beta_3 x_2 + \beta_4 x_3$$

where x_1 is engine speed in RPM,

$$x_{2} = \begin{cases} 1 \text{ if } F_{2} \text{ is used} \\ 0 \text{ if not} \end{cases}, \quad x_{3} = \begin{cases} 1 \text{ if } F_{3} \text{ is used} \\ 0 \text{ if not} \end{cases}$$

Principles of Model Building Models with Both Quantitative and Qualitative Independent Variables

Example: Performance of a diesel engine as a function fuel type at levels F_1, F_2 , and F_3 , and one quantitative independent variable engine speed in RPM.

If we add fuel type to engine speed, and set F_1 as the base level and add F_2 and F_3 then the second-order model would likely provide a good approximation to E(y):

$$E(y) = \beta_0 + \beta_1 x_1 + \beta_2 x_1^2 + \beta_3 x_2 + \beta_4 x_3$$

+ $\beta_5 x_1 x_2 + \beta_6 x_1 x_3 + \beta_7 x_1^2 x_2 + \beta_8 x_1^2 x_3$
where x_1 is engine speed in RPM,
 $x_2 = \begin{cases} 1 \text{ if } F_2 \text{ is used} \\ 0 \text{ if not} \end{cases}, \quad x_3 = \begin{cases} 1 \text{ if } F_3 \text{ is used} \\ 0 \text{ if not} \end{cases}$

Principles of Model Building

Homework: Read Chapter 5 Problems # 11, 15 (GASTURBINE), 22 (TEAMPERF), 37, 62 (SLUDGE)

D.B. Rowe

Principles of Model Building

Questions?

