Dr. Daniel B. Rowe Professor of Computational Statistics Department of Mathematical and Statistical Sciences Marquette University

Copyright D.B. Rowe 1

Chapter 3: Simple Linear Regression

Simple Linear Regression The Straight-Line Probabilistic Model

A First Order (Straight-Line) Model

 $y = \beta_0 + \beta_1 x + \varepsilon$

 $y =$ **Dependent** variable (variable to be modeled-sometimes called the **response** variable)

 $x =$ **Independent** variable (variable used as **predictor** of *y*)

where

- *ε* = (epsilon) = Random **error** component
- β_0 = (beta zero) = *y***-intercept** of the line
- $=$ (beta one) $=$ **Slope** of the line.

$$
E(y|x) = \beta_0 + \beta_1 x
$$

Simple Linear Regression The Straight-Line Probabilistic Model

$$
y = \beta_0
$$

Steps in a Regression Analysis

Step 1. Hypothesize the form of the model for *E*(*y*).

- **Step 2.** Collect the sample data.
- **Step 3.** Use the sample data to estimate unknown parameters in the model.
- **Step 4.** Specify the probability distribution of the random error term, and estimate any unknown parameters of this distribution. Also, check the validity of each assumption made about the probability distribution.
- **Step 5.** Statistically check the usefulness of the model.
- **Step 6.** When satisfied that the model is useful, use it for prediction, estimation, and so on.

$\beta_0 + \beta_1 x + \varepsilon$

Simple Linear Regression The Straight-Line Probabilistic Model

straight-line model is hypothesized

The straight-line model is hypothesized to relate sales revenue *y* to advertising expenditure *x*. That is, $y = \beta_0 + \beta_1 x + \varepsilon$

Example: The effect of Advertising on Revenue

Table 3.1

Appliance store data

D.B. Rowe 5

The straight-line model is hypothesized to relate sales revenue *y* to advertising expenditure *x*. That is, $y = \beta_0 + \beta_1 x + \varepsilon$

Example: The effect of Advertising on Revenue

Table 3.1

Appliance store data

D.B. Rowe 6

The straight-line model for the response *y* in terms of *x* is $y = \beta_0 + \beta_1 x + \varepsilon$

The fitted line, which we hope to find, is represented as 0^{+} $\mathcal{V}1^{\mathcal{N}}$ \hat{Q} \hat{R} \hat{R} \hat{r} $y = \mu_0 + \mu_1 x$ ˆ $=\beta_0 + \beta_1 x$

The line of means is

 $E(y | x) = \beta_0 + \beta_1 x$

where

```
\hat\beta_0 and \hat\beta_1 are estimators of \beta_0 and \beta_1 respectively.
            \hat{\beta_1} ar
```
D.B. Rowe 7

For a given data point, say, (x_i, y_i) , the observed value of *y* is y_i and the predicted value of y is obtained by substituting x_i into the prediction equation:

Then the sum of squares of the deviations of the *y*-values about their predicted values (i.e., the **sum of squares of residuals**) for all of the *n* data points is The quantities β_0 and β_1 that make the *SSE* a minimum are called the **least** squares estimates of the population parameters of β_0 and β_1 , and the prediction equation $\hat{y} = \beta_0 + \beta_1 x$ is called the least squares line. 2 $1 \cup i$ \mathcal{V}_0 $\mathcal{V}_1 \mathcal{V}$ $SSE = \sum_{i=1}^{n} [y_i - (\hat{\beta}_0 + \hat{\beta}_1 x)]^2$ \hat{B} : $\beta_{\!\scriptscriptstyle 1}$ th $\hat{3}$ t \hat{Q} \hat{R} \hat{R} \hat{r} $y = \beta_0 + \beta_1 x$ is ˆ = $\beta_0+\beta_1x$

D.B. Rowe **8 8**

The deviation of the *i*th value of *y* from its predicted value, called the *i***th residual**, is

$$
\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x
$$

$$
y_i - \hat{y}_i = [y_i - (\hat{\beta}_0 + \hat{\beta}_1 x)]
$$

To derive the coefficient estimators, we minimize *SSE* WRT β_0 and β_1 .

$$
SSE = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2
$$

\n
$$
\frac{\partial SSE}{\partial \beta_0}\Big|_{\hat{\beta}_0, \hat{\beta}_1} = \sum_{i=1}^{n} 2(y_i - \beta_0 - \beta_1 x_i)(-1) = 0 \longrightarrow \hat{\beta}_0 = \frac{\sum_{i=1}^{n} y_i(\sum_{i=1}^{n} x_i^2) - \sum_{i=1}^{n} x_i(\sum_{i=1}^{n} x_i^2)}{n(\sum_{i=1}^{n} x_i^2) - (\sum_{i=1}^{n} x_i^2)} = \sum_{i=1}^{n} 2(y_i - \hat{\beta}_0 - \hat{\beta}_1 x_i)(-x_i) = 0 \longrightarrow \hat{\beta}_1 = \frac{n(\sum_{i=1}^{n} x_i y_i) - (\sum_{i=1}^{n} x_i)(\sum_{i=1}^{n} x_i^2)}{n(\sum_{i=1}^{n} x_i^2) - (\sum_{i=1}^{n} x_i)^2}
$$

To derive the coefficient estimators, we minimize *SSE* WRT β_0 and β_1 .

D.B. Rowe 10

To derive the coefficient estimators, we minimize *SSE* WRT β_0 and β_1 .

Advertising expenditure

D.B. Rowe **11 11**

Intro to Regression & Classification

% Matlab code % enter data x=[1,2,3,4,5]'; y=[1,1,2,2,4]'; $X=[ones(5,1),x]$; % fit regression b=inv(X'^*X)* X'^*y % plot line figure; scatter(x,y) hold on $fplot(@(x) b(1,1)+b(2,1)*x)$ xlim([0.5,5.5])

Simple Linear Regression Model Assumptions

The probabilistic (linear) model relating *y* to *x* is $y = \beta_0 + \beta_1 x + \varepsilon$ ε

Assumption 1 The mean of the probability distribution of *ε* is 0.

Assumption 2 The variance of the probability distribution of is constant. $var(\varepsilon) = \sigma^2$

Assumption 3 The probability distribution of ε is normal. $\varepsilon \sim N(0, \sigma^2)$

Assumption 4 The errors associated with any two observations are independent.

Intro to Regression & Classification

- $E(\varepsilon) = 0$
	-

 $f(\varepsilon_i, \varepsilon_j) = f(\varepsilon_j) f(\varepsilon_j)$

Simple Linear Regression An Estimator of σ 2

The value of σ^2 is needed in the statistical inference related to regression analysis. Therefore, we need to estimate the value of σ^2 .

The best estimate of σ^2 is s^2 .

We refer to *s* as the **estimated standard error of the regression model**.

D.B. Rowe 13

$$
s2 = \frac{SSE}{Degrees \ of \ Freedom} = \frac{SSE}{n-2} \quad , \quad s = \sqrt{s2}
$$

Intro to Regression & Classification

$$
SSE = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 = SS_{yy} - \hat{\beta}_1 SS_{xy}
$$

$$
SS_{yy} = \sum_{i=1}^{n} (y_i - \overline{y})^2 = \sum_{i=1}^{n} y_i^2 - n(\overline{y})^2
$$

1 $i=1$

 $i=1$ $i=i$

Simple Linear Regression An Estimator of σ 2

Using R output to get the estimator of σ^2

```
n < 5x < -c(1,2,3,4,5)y < c(1,1,2,2,4)model=lm
(y~x
)
summary(model)
# get fitted coefficients
yhat
<
- model$fitted.values
b0 <
- model$coefficients[1]
b1 <
- model$coefficients[2]
# sample variance
s2<- sum((y-yhat)**2)/(n-2)
s <- sqrt(s2)
```

```
ca11:lm(formula = y ~ \sim ~ x)Residuals:
            2 \t 34.000e-01 -3.000e-01 -5.551e-17 -7.000e-01 6.000e-01Coefficients:
           Estimate Std. Error t value Pr(>|t|)(Intercept) -0.1000 0.6351 -0.157 0.8849
                       0.1915 3.656
     0.7000\mathsf{X}^-Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: (0.6055) on 3 degrees of freedom
Multiple R-squared: 0.8167, Adjusted R-squared: 0.7556
F-statistic: 13.36 on 1 and 3 DF, p-value: 0.03535
```
D . B . Rowe 14

Intro to Regression & Classification

% Matlab code n=5; x = [1,2,3,4,5]'; y = [1,1,2,2,4]'; X=[ones(5,1),x]; bhat=inv(X'*X)*X'*y yhat=X*bhat ; s2=sum((y -yhat).^2)/(n -2) s=sqrt(s2)

 0.0354 *

Simple Linear Regression Assessing the Utility of the Model

Hypothesized probabilistic model $y = \beta_0 + (\beta_1 x + \varepsilon)$

Wish to test to see if β_1 is statistically significant. *H*₀: $\beta_1 = 0$ $H_a: \beta_1 \neq 0$ $y = \beta_0 + \varepsilon$?

If the errors are normally distributed, $\varepsilon \sim N(0, \sigma^2)$, then $\hat{\beta}_1 \sim N(\beta_1, \sigma^2 / SS_{xx})$. $1 \quad \cdots \; \mathcal{V}_1$ ˆ ~ $\beta_1 \sim N(\beta_1, \sigma^2 / SS_{xx})$.

 $h = \frac{p_1 - v_1}{p_2 - v_1}$ has a Student-t distribution with *n*-2 degrees of freedom. $\hat{\c}^{-}_1$ $\sqrt{SS_{xx}}$ *Hypothesized Value t* S / \sqrt{SS} $=\frac{\beta_1-Hy_1}{\beta_1-Hy_2}$ $\hat{B}_{1}^{}$ $-$ 0 $/$ \sim $/$ *xx t* S / \sqrt{SS} $=\frac{\beta_1-0}{\sqrt{2\pi}}$

D.B. Rowe 15

Intro to Regression & Classification

R Code $x = c(1, 2, 3, 4, 5)$ $y=c(1,1,2,2,4)$ $model=Im(y^{\sim}x)$ summary(model)

Simple Linear Regression Assessing the Utility of the Model

Test of Model Utility: Simple Linear Regression

Test statistic:
$$
t = \widehat{\beta}_1 / s_{\widehat{\beta}_1} = \frac{\widehat{\beta}_1}{s / \sqrt{\text{SS}_{xx}}}
$$

Decision: Reject H_0 if $\alpha > p$ -value, or, if test statistic falls in rejection region

D.B. Rowe 16

Intro to Regression & Classification

R Code x=c(1,2,3,4,5) y=c(1,1,2,2,4) model=lm(y~x) summary(model)

Simple Linear Regression Assessing the Utility of the Model

A 100(1-*α***)% Confidence Interval for the Simple Linear Regression Slope** β_1

and *tα*/2 is based on a Student-t distribution with (*n*-2) df

Intro to Regression & Classification

$$
\hat{\beta}_1 \pm t_{\alpha/2} \frac{S}{\sqrt{SS_{xx}}}
$$

R codes $x = c(1, 2, 3, 4, 5)$ $y = c(1, 1, 2, 2, 4)$ model=lm(y~x) confint(model, level=0.95)

Simple Linear Regression The Coefficient of Correlation

Pearson product moment coefficient of correlation *r* is

D.B. Rowe 18

(b) $r = 1$: a perfect positive linear relationship between y and x

(d) $r = -1$: a perfect negative linear relationship between y and x

Intro to Regression & Classification

$$
SS_{xx} = \sum_{i=1}^{n} x_i^2 - n(\overline{x})^2
$$

$$
SS_{xy} = \sum_{i=1}^{n} x_i y_i - n\overline{xy}
$$

(c) Negative r: y decreases as x increases

$$
SS_{yy} = \sum_{i=1}^{n} y_i^2 - n(\overline{y})^2
$$

Simple Linear Regression The Coefficient of Correlation

Wish to test to see if *ρ* is statistically significant. *H*₀: $\rho = 0$ H_a : $\rho \neq 0$

Pearson product moment coefficient of correlation *r* is

If the errors are normally distributed, then

D.B. Rowe 19

$$
t = r \frac{\sqrt{n-2}}{\sqrt{1-r^2}}
$$
 has a Student-t distribution with *n*-2 degrees of freedom.

Simple Linear Regression The Coefficient of Correlation

Test of Hypothesis for Linear Correlation is

Test statistic: $t=r\sqrt{n-2}/\sqrt{1-r^2}$

Decision: Reject H_0 if $\alpha > p$ -value or, if test statistic falls in rejection region

D.B. Rowe 20

positye

D TEST

Simple Linear Regression The Coefficient of Determination

 r^2 = Proportion of total sample variability of the *y*-values explained by the Linear relationship between *x* and *y*.

Practical Interpretation of the Coefficient of Determination

About $100(r^2)\%$ of the sample variation in y (measured by the total sum of squares of deviations of the sample y -values about their mean \bar{y}) can be explained by (or attributed to) using *x* to predict *y* in the straight-line model.

² *Explained sample variability r Total sample variability* $=$ $-$

D.B. Rowe 21

Intro to Regression & Classification

$$
r^2 = \frac{SS_{yy} - SSE}{SS_{yy}}
$$

R Code $x = c(1, 2, 3, 4, 5)$ $y = c(1,1,2,2,4)$ $model=Im(y^{\sim}x)$ summary(model)\$r.squared [1] 0.8166667

Simple Linear Regression Using the Model for Estimation and Prediction

A 100(1-*α*)% Confidence Interval for the Mean Value

A 100(1-*α*)% Prediction Interval for an Individual

D.B. Rowe 22

Intro to Regression & Classification

$$
\sigma_{\hat{y}} = \sigma \sqrt{\frac{1}{n} + \frac{(x_p - \overline{x})^2}{SS_{xx}}}
$$
 of y for $x = x_p$

$$
\hat{y} \pm t_{\alpha/2} s \sqrt{\frac{1}{n} + \frac{(x_p - \overline{x})^2}{SS_{xx}}}
$$

$$
\sigma_{(y-\hat{y})} = \sigma \sqrt{1 + \frac{1}{n} + \frac{(x_p - \bar{x})^2}{SS_{xx}}}
$$

$$
\hat{y} \pm t_{\alpha/2} s \sqrt{1 + \frac{1}{n} + \frac{(x_p - \bar{x})^2}{SS_{xx}}}
$$

Range of x 's in sample

Simple Linear Regression

Homework:

Read Chapter 3 Problems # 2, 6 (use a software package), 19, 26, repeat example 3.2 including confidence interval and hypothesis test, 39

Simple Linear Regression

Questions?

