Chapter 1: A Review of Basic Concepts B

Dr. Daniel B. Rowe **Professor of Computational Statistics Department of Mathematical and Statistical Sciences** Marquette University

Copyright D.B. Rowe

A Review of Basic Concepts

Testing a Hypothesis About a Population Mean

- 1. Null Hypothesis (denoted H_0): This is the hypothesis that is postulated to be true.
- 2. Alternative Hypothesis (denoted H_a): This hypothesis is counter to the null hypothesis and is usually the hypothesis that the researcher wants to support.
- 3. Test Statistic: Calculated from the sample data, this statistic functions as a decisionmaker.
- 4. Level of significance (denoted α): This is the probability of a Type I error (i.e., the probability of rejecting H_0 given that H_0 is true).
- 5. **Rejection Region:** Values of the test statistic that lead the researcher to reject H_0 and accept H_a .
- 6. **p-Value:** Also called the observed significance level, this is the probability of observing a value of the test statistic at least as contradictory to the null hypothesis as the observed test statistic value, assuming the null hypothesis is true.
- 7. Conclusion: The decision to "reject" or "fail to reject" H_0 based on the value of the test statistic, α , the rejection region, and/or the p-value.

A Review of Basic Concepts

Testing a Hypothesis About a Population Mean Small-Sample Test of Hypothesis about μ

Test statistic: $t = (\overline{y} - \mu_0) / (s / \sqrt{n})$

	ONE-TAILED TESTS		TWO-TAILED TEST
	$egin{array}{c c} H_{ heta}\colon \mu=\mu_0 \end{array} & H_{ heta}\colon \mu=\mu_0 \end{array}$		H_{0} : $\mu=\mu_{0}$
	$H_a\colon \mu < \mu_0$	$H_a\colon \mu > \mu_0$	$H_a\colon \mu eq \mu_0$
Rejection region:	$t < -t_{lpha}$	$t < t_{lpha}$	$ t >t_{lpha/2}$
p-value:	$\mathrm{P}(t < t_c)$	$\mathrm{P}(t>t_c)$	$2 \mathrm{P}(t > t_c) ext{ if } t_c ext{ is positive} \ 2 \mathrm{P}(t < t_c) ext{ if } t_c ext{ is negative}$

A Review of Basic Concepts

Inferences About the Difference Between Two Population Means Small-Sample Confidence Interval for $(\mu_1 - \mu_2)$: Independent Samples

$$(\overline{y}_1 - \overline{y}_2) \pm t_{\alpha/2} \sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}, \quad s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$$

 s_n^2 is a "pooled" estimate of the common population variance and $t_{\alpha/2}$ is based on $df = n_1 + n_2 - 2$

Assumptions:

Both sampled populations have distributions that are approximately normal. The population variances are equal.

The samples are randomly and independently selected from the populations.

A Review of Basic Concepts

Testing a Hypothesis About a Population Mean Small-Sample Test of Hypothesis About $(\mu_1 - \mu_2)$:

Dependent Samples Test statistic: $t = \frac{(\overline{y}_1 - \overline{y}_2) - D_0}{\sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2}\right)}} \quad \text{where} \quad s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} .$

ONE-TAILED TESTSTWO-TAILED TEST $H_0: \mu_1 - \mu_2 = D_0$ $H_0: \mu_1 - \mu_2 = D_0$ $H_0: \mu_1 - \mu_2 = D_0$ $H_a: \mu_1 - \mu_2 < D_0$ $H_a: \mu_1 - \mu_2 > D_0$ $H_a: \mu_1 - \mu_2 \neq D_0$ Rejection region: $t < -t_{\alpha}$ $t > t_{\alpha}$ $|t| > t_{\alpha/2}$ p-value: $P(t < t_c)$ $P(t > t_c)$ $2P(t > t_c)$ if t_c is positive

Decision: Reject H_0 if $\alpha > p$ -value, or, if test statistic falls in rejection region

A Review of Basic Concepts

Inferences About the Difference Between Two Population Means Paired-Difference Confidence Interval for $\mu_d = \mu_1 - \mu_2$: Dependent Samples

$$\overline{y}_d \pm t_{\alpha/2} \, \frac{S_d}{\sqrt{n_d}} \, ,$$

 \overline{y}_{d} is the sample mean difference S_d is the sample standard deviation of differences and $t_{\alpha/2}$ is based on $df = n_d - 1$

Assumptions:

Population of differences has a normal distribution.

The samples differences are randomly selected from the population.

A Review of Basic Concepts

Testing a Hypothesis About a Population Mean Paired Difference Test of Hypothesis for $\mu_d = \mu_1 - \mu_2$:

ONE-TAILED TESTS		TWO-TAILED TEST	Test statistic: $t = \frac{\overline{y}_d - D_0}{\overline{y}_d}$
$H_{ heta}$: $\mu_{ m d} = D_0$	H_{0} : $\mu_{ m d} = D_{0}$	$H_{ heta}$: $\mu_{ m d} = D_0$	$S_d / \sqrt{n_d}$
H_a : $\mu_{ m d} < D_0$	H_a : $\mu_{ m d} > D_0$	H_a : $\mu_{ m d} eq D_0$	

Rejection Region:	$t < -t_{lpha}$	$t < t_{lpha}$	$ t >t_{lpha/2}$
p-value:	$\mathrm{P}(t>t_c)$	$\mathrm{P}(t>t_c)$	$2 { m P}(t>t_c~)~{ m if}~t_c~{ m is~positive} \ 2 { m P}(t< t_c~)~{ m if}~t_c~{ m is~negative}$

Assumptions:

The differences are randomly selected from the population of differences. The relative freq. distribution of the population of differences is normal.

D.B. Rowe

A Review of Basic Concepts

Comparing Two Population Variances

$$H_0: \frac{\sigma_1^2}{\sigma_2^2} = k \ (\sigma_1^2 = k\sigma_2^2) \qquad \text{usually } k=1$$
$$H_a: \frac{\sigma_1^2}{\sigma_2^2} \neq k \ (\sigma_1^2 \neq k\sigma_2^2)$$

Test Statistic:

$$F = \frac{s_1^2}{ks_2^2}$$

(put larger sample variance in numerator)

Assumptions:

The two sampled populations are normally distributed.

The samples are randomly and independently selected from their respective populations.

A Review of Basic Concepts

merator Degress of Freedom				
4	5	6	7	
24.6	230.2	234.0	236.8	
19.25	19.30	19.33	19.35	
9.12	9.01	8.94	8.89	
6.39	6.26	6.16	6.09	
5.19	5.05	4.95	4.88	
4.53	4.39	4.28	4.21	
4.12	3.97	3.87	3.79	
3.84	3.69	3.58	3.50	
3.63	3.48	3.37	3.29	
3.48	3.33	3.22	3.14	
3.36	3.20	3.09	3.01	
3.25	3.11	3.00	2.91	
3.18	3.03	2.92	2.83	
3.11	2.96	2.85	2.76	

A Review of Basic Concepts

Comparing Two Population Variances F-Test for Equal Population Variances: Independent Samples

	ONE-TAIL	ED TESTS	TWO-TAILED TEST
	$H_{ heta}\!:\!\sigma_1^2=\sigma_2^2$	$H_{ heta}\!:\!\sigma_1^2=\sigma_2^2$	$H_{ heta}$: $\sigma_1^2=\sigma_2^2$
	$H_a\!:\!\sigma_1^2<\sigma_2^2$	$H_a\!:\!\sigma_1^2>\sigma_2^2$	$H_a\!:\!\sigma_1^2 eq\sigma_2^2$
Test statistic:	$F=s_2^2/s_1^2$	$F=s_1^2/s_2^2$	$F = rac{ ext{Larger sample variance}}{ ext{Smaller sample variance}}$

Rejection Region:	$F>F_{lpha}$	$F>F_{lpha}$	$F>F_{lpha/2}$
Numerator df (v_1) :	$n_2 - 1$	$n_1 - 1$	n-1 for large variance
Denominator df (v_2) :	$n_1 - 1$	n_2-1	n-1 for smaller variance
p-value:	$\mathrm{P}(F>F_c)$	$\mathrm{P}(F>F_c)$	$\mathrm{P}(F^{*} < 1/F_{c}) + \mathrm{P}(F > F_{\mathrm{c}})$

Assumptions: Both sampled populations are normally distributed. The samples are random and independent.

D.B. Rowe

A Review of Basic Concepts

Homework: Read Chapter 1

D.B. Rowe

Chapter 2: Introduction to Regression Analysis

Dr. Daniel B. Rowe **Professor of Computational Statistics Department of Mathematical and Statistical Sciences** Marquette University

Copyright D.B. Rowe

Introduction to Regression Analysis Modeling a Response

Regression analysis is a branch of statistical methodology concerned with relating a response y to a set of independent, or predictor, variables x_1, \ldots, x_k

Our goal is to build a model that mathematically describes the relationship between a value of our independent variable x and our dependent variable y. and allow us to predict the value of y for a given value of x. $\frac{f(y)}{t}$

$$y = \underline{E(y)} + Random \ Error$$

expected mean function

Random Error is a random draw from a normal distribution with mean 0 and variance σ^2 .

D.B. Rowe

Introduction to Regression Analysis Modeling a Response

At each point along the curve, observations have additive normal error ε .

$\varepsilon \sim N(0,\sigma^2)$

Introduction to Regression Analysis **Overview of Regression Analysis**

If we have a "smooth" function E(y|x) = f(x) that depends on a single independent variable, then we can represent it with a Taylor series expansion around 0 as

$$E(y \mid x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots$$

$$E(y | x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \dots$$

Linear in the parameters regression.

Introduction to Regression Analysis **Overview of Regression Analysis**

If we have a "smooth" function E(y|x) = f(x) that depends on a single independent variable, then we can represent it with a Taylor series expansion around 0 as

$$E(y \mid x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots$$

$$E(y \mid x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \dots$$

and if $E(y/x_1, x_2)$ depends on two independent variables, then

$$E(y \mid x_1, x_2) = f(0,0) + \frac{f_{x_1}(0,0)}{1!} x_1 + \frac{f_{x_2}(0,0)}{2!} x_2 + \frac{f_{x_1x_1}(0,0)}{2!} x_1^2 + \frac{f_{x_2x_2}(0,0)}{3!} x_2 + \frac{f_{x_2x_2}(0,0)}{3!} x_1^2 + \frac{f_{x_2x_2}(0,0)}{3!} x_2 + \frac{f_{x_2x_2}(0,0)}{3!} x_1^2 + \frac{f_{x_2x_2}(0,0)}{3!} x_2 + \frac{f_{x_2x_2}(0,0)}{3!} x_1^2 + \frac{f_{x_2x_2}(0,0)}{3!} x_1 + \frac{f_{x_2x_2}(0$$

$$E(y | x_1, x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1^2 + \beta_4 x_2^2 + \beta_5 x_1 x_2 + \dots$$

Linear in the parameters regression.

Introduction to Regression Analysis Overview of Regression Analysis

Example: A property appraiser might like to relate percentage price increase y of residential properties to the two quantitative independent variables x_1 , square footage of heated space, and x_2 , lot size.

This model could be represented by a response surface that traces the mean percentage price increase $E(y | x_1, x_2)$ for various combinations of x_1 and x_2 .

$$y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \beta_4 x_1^2 + \beta_5 x_2^2 + \varepsilon$$
$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_1 x_2 + \hat{\beta}_4 x_1^2 + \hat{\beta}_5 x_2^2$$

Introduction to Regression Analysis Overview of Regression Analysis

Seven

Regression Modeling: Six-Step Procedure

- 1. Hypothesize the form of the model for E(y).
- 2. Collect the sample data.
- 3. Use the sample data to estimate unknown parameters in the model.
- 4. Specify the probability distribution of the random error term, and estimate any unknown parameters of this distribution.
- 5. Statistically check the usefulness of the model.
- 6. Check the validity of the assumptions on the random error term, and make model modifications if necessary.
- 7. When satisfied that the model is useful, and assumptions are met, use the model to make inferences, i.e., parameter interpretation, prediction, estimation, etc.

Introduction to Regression Analysis **Collecting the Data for Regression**

Definition 2.3

If the values of the independent variables (x's) in regression are **uncontrolled** (i.e., not set in advance before the value of y is observed) but are measured without error, the data are observational.

	Executive				
	1	2	3	4	5
Annual compensation, y (\$)	85,420	61,333	107,500	59,225	98,400
Experience, x_1 (years)	8	2	7	3	11
College education, x_2 (years)	4	8	6	7	2
No. of employees supervised, x_3	13	6	24	9	4
Corporate assets, x_4 (millions, \$)	1.60	0.25	3.14	0.10	2.22
Age, x_5 (years)	42	30	53	36	51
Board of directors, x_6 (1 if yes, 0 if no)	0	0	1	0	1
International responsibility, x_7 (1 if yes, 0 if no)	1	0	1	0	0

Introduction to Regression Analysis Collecting the Data for Regression

Definition 2.4

If the values of the independent variables (x's) in regression are **controlled** using a designed experiment (i.e., set in advance before the value of y is observed), the data are experimental.

Think of x as dial settings for your science experiment. Every time you fix an x, you run the experiment to get a y. In regression, x is fixed and known.

L	Pressure, x_2	Impurity, y
	50	2.7
	60	2.4
	70	2.9
	50	2.6
	60	3.1
	70	3.0
	50	1.5
	60	1.9
	70	2.2

Introduction to Regression Analysis Collecting the Data for Regression

% R code install.packages("plotly") library(plotly) print("Temperature x1, Pressure x2, and Impurity y Data") % enter x1 and x2 and y dataset x1 <- c(100,100,100,125,125,125,150,150,150) x2 <- c(50,60,70,50,60,70,50,60,70) y <- c(2.7,2.4,2.9,2.6,3.1,3.0,1.5,1.9,2.2) x3=x1*x1; x4=x2*x2; x5=x1*x2; # Fit linear model Im.model $y <- Im(y \sim x1 + x2 + x3 + x4 + x5)$ # get fitted coefficients yhat <- Im.model y\$fitted.values</pre> b0 <- Im.model y\$coefficients[1] b1 <- Im.model y\$coefficients[2] b2 <- Im.model y\$coefficients[3] b3 <- Im.model y\$coefficients[4] b4 <- Im.model y\$coefficients[5] b5 <- Im.model y\$coefficients[6] Im.model y\$coefficients

% Create surface plot

```
xx1 <- seq(90, 160, length.out = 100)
xx2 <- seq(40, 80, length.out = 100)
f <- function(xx1, xx2) \{b0+b1^*xx1+b2^*xx2+b3^*xx1^*xx1+b4^*xx2^*xx2+b5^*xx1^*xx2\}
fig <- plot ly(x = xx1, y = xx2, z = outer(xx1, xx2, f), type = "surface",
         colorscale = list(c(0, 1), c("red", "yellow")))
fig <- fig %>%
 layout(scene = list(xaxis = list(title = 'X1'), yaxis = list(title = 'X2')
```

```
,zaxis = list(title = 'y')))
```

```
fig
```

```
% Matlab code
x1 =[100,100,100,125,125,125,150,150,150]';
x2 =[50,60,70,50,60,70,50,60,70]';
y =[2.7,2.4,2.9,2.6,3.1,3.0,1.5,1.9,2.2]';
```

```
n=length(y);
X=[ones(n,1),x1,x2,x1.*x1,x2.*x2,x1.*x2];
bhat=inv(X'*X)*X'*y
```

fxy = @(xx1,xx2) bhat(1,1)+bhat(2,1)*xx1+bhat(3,1)*xx2+...bhat(4,1)*xx1.^2+bhat(5,1)*xx2.^2+bhat(6,1)*xx1.*xx2; figure;

```
fsurf(fxy,[90,160,40,80]), xlabel('x 1'),ylabel('x 2'),zlabel('y')
hold on, scatter3(x1,x2,y,'filled')
```


Introduction to Regression Analysis

Example: We can use regression to fit a surface to (x,y) data.

D.B. Rowe

$y = X\beta + \varepsilon$

Introduction to Regression Analysis

Example: We can use regression to fit a surface to (*x*,*y*) data.

D.B. Rowe

$y = X\beta + \varepsilon$

x1	x2	у
-1	-1	86.0753
-1	-0.7143	91.5249
-1	-0.4286	86.1966
-1	-0.1429	95.2958
-1	0.1429	97.0661
-1	0.4286	96.6703
-1	0.7143	101.2757
-1	1	105 6852
-0 7143	-1	93 5854
-0 7143	-0 7143	94 8246
-0 7143	-0.4286	89 4431
-0.7143	-0.4280	101 0608
0.7143	0.1425	101.0050
0.7143	0.1425	100 500
-0.7143	0.4200	100.3882
-0.7143	0.7145	105.0009
-0.7143	1	100.0180
-0.4280	-1	02.0003
-0.4286	-0.7143	93.6937
-0.4286	-0.4286	96.3895
-0.4286	-0.1429	99.263
-0.4286	0.1429	100.6287
-0.4286	0.4286	99.7279
-0.4286	0.7143	106.4345
-0.4286	1	111.1176
-0.1429	-1	90.2635
-0.1429	-0.7143	94.2122
-0.1429	-0.4286	96.4538
-0.1429	-0.1429	97.2503
-0.1429	0.1429	101.302
-0.1429	0.4286	101.9969
-0.1429	0.7143	108.2054
-0.1429	1	106.9916
0.1429	-1	88.5765
0.1429	-0.7143	91,9524
0.1429	-0.4286	90.54
0.1429	-0.1429	102,1625
0 1429	0 1429	102 7932
0 1429	0.4286	103 4901
0.1420	0.71/13	110 5077
0.1420	1	107 2013
0.1429	1	01 0294
0.4200	-1	0/ E171
0.4260	-0./143	54.51/1 00 40FC
0.4286	-0.4286	30.4950
0.4286	-0.1429	101.044
0.4286	0.1429	101.8417
0.4286	0.4286	106.3685
0.4286	0.7143	108.956
0.4286	1	113.3983
0.7143	-1	95.758
0.7143	-0.7143	98.6471
0.7143	-0.4286	97.5584
0.7143	-0.1429	102.2976
0.7143	0.1429	102.5718
0.7143	0.4286	105.6301
0.7143	0.7143	110.7006
0.7143	1	116.6367
1	-1	93.4607
1	-0.7143	98.5999
1	-0.4286	100.2631
1	-0.1429	105.8061
1	0.1429	104.2504
1	0.4286	109.3508
1	0.7143	113.2479
1	1	117.2012

Introduction to Regression Analysis

Example: We can use regression to fit a surface to (x,y) data.

$$\hat{\beta} = (X'X)^{-1}X'y$$

D.B. Rowe

$y = X\beta + \varepsilon$

Introduction to Regression Analysis

Homework: Read Chapter 2

Introduction to Regression Analysis

Questions?

