Dr. Daniel B. Rowe Professor of Computational Statistics Department of Mathematical and Statistical Sciences Marquette University

Copyright D.B. Rowe 1

Chapter 1: A Review of Basic Concepts B

Testing a Hypothesis About a Population Mean

- 1. **Null Hypothesis (denoted** *H***⁰):** This is the hypothesis that is postulated to be true.
- 2. **Alternative Hypothesis (denoted** *H^a* **):** This hypothesis is counter to the null hypothesis and is usually the hypothesis that the researcher wants to support.
- 3. **Test Statistic:** Calculated from the sample data, this statistic functions as a decisionmaker.
- 4. **Level of significance (denoted** *α***):** This is the probability of a *Type I error* (i.e., the probability of rejecting H_0 given that H_0 is true).
- 5. **Rejection Region:** Values of the test statistic that lead the researcher to reject H_0 and accept *H^a* .
- 6. **p-Value:** Also called the observed significance level, this is the probability of observing a value of the test statistic at least as contradictory to the null hypothesis as the observed test statistic value, assuming the null hypothesis is true.
- 7. **Conclusion:** The decision to "reject" or "fail to reject" H_0 based on the value of the test statistic, *α*, the rejection region, and/or the p-value.

D.B. Rowe 2

Testing a Hypothesis About a Population Mean Small-Sample Test of Hypothesis about *μ*

D.B. Rowe 3

Test statistic:
$$
t = (\overline{y} - \mu_0) / (s / \sqrt{n})
$$

Inferences About the Difference Between Two Population Means Small-Sample Confidence Interval for $(\mu_1 \text{-} \mu_2)$ **: Independent Samples**

Assumptions:

Both sampled populations have distributions that are approximately normal. The population variances are equal.

$$
(\overline{y}_1 - \overline{y}_2) \pm t_{\alpha/2} \sqrt{s_p^2 \left(\frac{1}{n_1} + \frac{1}{n_2} \right)}, \qquad s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}
$$

 s_p^2 is a "pooled" estimate of the common population variance and $t_{\alpha/2}$ is based on $df=n_1+n_2-2$ $^$ \bm{S}_p $\bm{\cdot}$:

The samples are randomly and independently selected from the populations.

Testing a Hypothesis About a Population Mean Small-Sample Test of Hypothesis About $(\mu_1 \text{-} \mu_2)$ **:**

Dependent Samples Test statistic: $(\bar{y}_1 - \bar{y}_2) - D_0$ where $s_p^2 = \frac{(n_1 - 1)(n_1 + (n_2 - 1))n_2}{n_1 + n_2}$. 2 | $1 \t\cdot \t\cdot 2$ $(\overline{y}_1 - \overline{y}_2)$ – 1 1 *p* | $\overline{y}_1 - \overline{y}_2$) – D_0 *t s* 1 *n n* \mathcal{V}_{α} $\mathcal{V} - \mathcal{U}_{\alpha}$ $=\frac{1}{\sqrt{s_p^2(1+1)}}$ $\begin{pmatrix} n_1 & n_2 \end{pmatrix}$ $\frac{2}{1} + (n_2 - 1)s_2^2$ **n Mean**

(μ_1 - μ_2):
 $\mu_2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2}$ $\frac{1}{2} s_1^2 + (r_1 + r_2 - r_1)$ ean
 $-\mu_2$):
 $(n_1-1)s_1^2 + (n_2-1)s_2^2$
 n_1+n_2-2 $n_1 + n_2 - 2$ **an**
 *n*₁ - 1) s_1^2 + (*n*₂ - 1) s_2^2
 *n*₁ + *n*₂ - 2 S_n^2 *n*₁ + *n*₂ $=\frac{V}{V}$

ONE-TAILED TESTS TWO-TAILED TEST $H_0: \mu_1 - \mu_2 = D_0$ $H_0: \mu_1 - \mu_2 = D_0$ $H_0: \mu_1 - \mu_2 = D_0$ *t*t*α*/2 *t* $2P(t < t_c)$ if t_c is negative

Decision: Reject *H*₀ if α>*p*-value, or, if test statistic falls in rejection region

D.B. Rowe 5

Intro to Regression & Classification

 $-t_{\alpha/2}$

0

 $t_{\alpha/2}$

Inferences About the Difference Between Two Population Means Paired-Difference Confidence Interval for $\mu_d = \mu_1 - \mu_2$ **: Dependent Samples**

Assumptions:

Population of differences has a normal distribution.

$$
\overline{y}_d \pm t_{\alpha/2} \frac{S_d}{\sqrt{n_d}} ,
$$

 \bar{y}_d is the sample mean difference *s*_{*d*} is the sample standard deviation of differences and $t_{\alpha/2}$ is based on $df=n_d$ -1

The samples differences are randomly selected from the population.

Testing a Hypothesis About a Population Mean Paired Difference Test of Hypothesis for $\mu_d = \mu_1 - \mu_2$ **:**

Assumptions:

The differences are randomly selected from the population of differences. The relative freq. distribution of the population of differences is normal.

D.B. Rowe 7

 $-t_{\alpha/2}$

 O

 $t_{\alpha/2}$

Comparing Two Population Variances

Test Statistic:

(put larger sample variance in numerator)

Assumptions:

The two sampled populations are normally distributed.

$$
H_0: \frac{\sigma_1^2}{\sigma_2^2} = k \ (\sigma_1^2 = k \sigma_2^2),
$$
 usually $k=1$
\n
$$
H_a: \frac{\sigma_1^2}{\sigma_2^2} \neq k \ (\sigma_1^2 \neq k \sigma_2^2)
$$

The samples are randomly and independently selected from their respective populations.

D.B. Rowe **8 8**

$$
F = \frac{s_1^2}{ks_2^2}
$$

D.B. Rowe **9**

Comparing Two Population Variances F-Test for Equal Population Variances: Independent Samples

Assumptions: Both sampled populations are normally distributed. The samples are random and independent.

D.B. Rowe 10

Homework: Read Chapter 1

Dr. Daniel B. Rowe Professor of Computational Statistics Department of Mathematical and Statistical Sciences Marquette University

Copyright D.B. Rowe 12

Chapter 2: Introduction to Regression Analysis

Introduction to Regression Analysis Modeling a Response

Regression analysis is a branch of statistical methodology concerned with relating a response *y* to a set of independent, or predictor, variables x_1, \ldots, x_k

Our goal is to build a model that mathematically describes the relationship between a value of our independent variable *x* and our dependent variable *y*. and allow us to predict the value of *y* for a given value of *x*. $\binom{f(y)}{f(x)}$

$$
y=E(y)+Random Error
$$

Random Error is a random draw from a normal distribution with mean 0 and variance σ^2 . 0

D.B. Rowe 13

expected mean function

Introduction to Regression Analysis Modeling a Response

At each point along the curve, observations have additive normal error *ε*.

$\varepsilon \sim N(0, \sigma^2)$

If we have a "smooth" function $E(y|x)=f(x)$ that depends on a single independent variable, then we can represent it with a Taylor series expansion around 0 as

Linear in the parameters regression.

$$
E(y \mid x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots
$$

$$
E(y \mid x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \dots
$$

If we have a "smooth" function $E(y|x)=f(x)$ that depends on a single independent variable, then we can represent it with a Taylor series expansion around 0 as

Linear in the parameters regression.

Intro to Regression & Classification

$$
E(y \mid x) = f(0) + \frac{f'(0)}{1!}x + \frac{f''(0)}{2!}x^2 + \frac{f'''(0)}{3!}x^3 + \dots
$$

$$
E(y|x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \dots
$$

d if $E(y|x_1, x_2)$ depends on two independent variables, then

$$
E(y|x_1, x_2) = f(0, 0) + \frac{f_{x_1}(0, 0)}{1!} x_1 + \frac{f_{x_2}(0, 0)}{2!} x_2 + \frac{f_{x_1x_1}(0, 0)}{2!} x_1^2 + \frac{f_{x_2x_2}(0, 0)}{3!} x_2^2 + \frac{f_{x_1x_2}(0, 0)}{3!} x_1x_2 + \dots
$$

$$
E(y|x_1, x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1^2 + \beta_4 x_2^2 + \beta_5 x_1 x_2 + \dots
$$

$$
E(y | x_1, x_2) = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1^2 + \beta_4 x_2^2 + \beta_5 x_1 x_2 + \dots
$$

$$
E(y \mid x) = \beta_0 + \beta_1 x + \beta_2 x^2 + \beta_3 x^3 + \dots
$$

and if $E(y|x_1, x_2)$ depends on two independent variables, then

Example: A property appraiser might like to relate percentage price increase *y* of residential properties to the two quantitative independent variables x_1 , square footage of heated space, and x_2 , lot size.

This model could be represented by a response surface that traces the mean percentage price increase $E(y | x_1, x_2)$ for various combinations of x_1 and x_2 .

$$
y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_3 x_1 x_2 + \beta_4 x_1^2 + \beta_5 x_2^2 + \varepsilon
$$

$$
\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \hat{\beta}_3 x_1 x_2 + \hat{\beta}_4 x_1^2 + \hat{\beta}_5 x_2^2
$$

Seven

Regression Modeling: Six-Step Procedure

- 1. Hypothesize the form of the model for *E*(*y*).
- 2. Collect the sample data.
- 3. Use the sample data to estimate unknown parameters in the model.
- 4. Specify the probability distribution of the random error term, and estimate any unknown parameters of this distribution.
- 5. Statistically check the usefulness of the model.
- 6. Check the validity of the assumptions on the random error term, and make model modifications if necessary.
- 7. When satisfied that the model is useful, and assumptions are met, use the model to make inferences, i.e., parameter interpretation, prediction, estimation, etc.

Introduction to Regression Analysis Collecting the Data for Regression

Definition 2.3

If the values of the independent variables (*x*'s) in regression are **uncontrolled** (i.e., not set in advance before the value of *y* is observed) but are measured without error, the data are observational.

D.B. Rowe 19

Introduction to Regression Analysis Collecting the Data for Regression

Definition 2.4

If the values of the independent variables (*x*'s) in regression are **controlled** using a designed experiment (i.e., set in advance before the value of y is observed), the data are experimental.

 $1 \quad 0.001 \times 2$ 2 Ω Ω $-0.001x_1^2+0.002x_2^2+0.005x_1x_2$ $\hat{y} = -7.894 + 0.207 x_1 - 0.061 x_2$

Temperature, x_1

Think of *x* as dial settings for your science experiment. Every time you fix an *x*, you run the experiment to get a *y*. In regression, *x* is fixed and known.

D.B. Rowe 20

Introduction to Regression Analysis Collecting the Data for Regression

D.B. Rowe 21

Intro to Regression & Classification

% R code install.packages("plotly") library(plotly) print("Temperature x1, Pressure x2, and Impurity y Data") % enter x1 and x2 and y dataset x1 <- c(100,100,100,125,125,125,150,150,150) x2 <- c(50,60,70,50,60,70,50,60,70) y <- c(2.7,2.4,2.9,2.6,3.1,3.0,1.5,1.9,2.2) $x3=x1*x1;$ $x4 = x2 \cdot x2$; x5=x1*x2; # Fit linear model lm.model $y < - \text{Im}(y \sim x1 + x2 + x3 + x4 + x5)$ # get fitted coefficients yhat <- lm.model_y\$fitted.values b0 <- lm.model y\$coefficients[1] b1 <- lm.model_y\$coefficients[2] b2 <- Im.model_y\$coefficients[3] b3 <- Im.model_y\$coefficients[4] b4 <- lm.model_y\$coefficients[5] b5 <- lm.model y\$coefficients[6] lm.model_y\$coefficients

```
% Create surface plot
```

```
xx1 < -seq(90, 160, length.out = 100)xx2 < -seq(40, 80, length.out = 100)f <- function(xx1, xx2) {b0+b1*xx1+b2*xx2+b3*xx1*xx1+b4*xx2*xx2+b5*xx1*xx2}
fig <- plot ly(x = xx1, y = xx2, z = outer(xx1, xx2, f),type = "surface",
        colorscale = list(c(0, 1), c("red", "yellow"))fig \lt- fig %>%
```

```
layout(scene = list(xaxis = list(title = 'X1'), yaxis = list(title = 'X2')
             ,zaxis = list(title = 'y')))
```
fxy = ω (xx1,xx2) bhat(1,1)+bhat(2,1)*xx1+bhat(3,1)*xx2+... bhat(4,1)*xx1.^2+bhat(5,1)*xx2.^2+bhat(6,1)*xx1.*xx2; figure; fsurf(fxy,[90,160,40,80]), xlabel('x_1'),ylabel('x_2'),zlabel('y')

```
fig
```

```
% Matlab code
x1 =[100,100,100,125,125,125,150,150,150]'; 
x2 =[50,60,70,50,60,70,50,60,70]';
y =[2.7,2.4,2.9,2.6,3.1,3.0,1.5,1.9,2.2]';
```

```
n=length(y);
X=[ones(n,1),x1,x2,x1.*x1,x2.*x2,x1.*x2];
bhat=inv(X'*X)*X'*y
```

```
hold on, scatter3(x1,x2,y,'filled')
```
Example: We can use regression to fit a surface to (*x*,*y*) data.

D.B. Rowe 22

$y = X\beta + \varepsilon$

Example: We can use regression to fit a surface to (*x*,*y*) data.

$y = X\beta + \varepsilon$

 ξ stack rows

Example: We can use regression to fit a surface to (*x*,*y*) data.

$$
\hat{\beta} = (X'X)^{-1}X'y
$$

$y = X\beta + \varepsilon$

80

Homework: Read Chapter 2

Questions?

