MATH 2780 Chapter 3 Worksheet

Summary

A First Order (Straight-Line) Model

$$y = \beta_0 + \beta_1 x + \varepsilon$$

where

y = Dependent variable (variable to be modeled-sometimes called the response variable)

x =**Independent** variable (variable used as **predictor** of y)

$$E(y|x) = \beta_0 + \beta_1 x$$

 ε = (epsilon) = Random **error** component

 β_0 = (beta zero) = *y*-intercept of the line

 β_1 = (beta one) = **Slope** of the line.

Coefficient Estimation

$$SS_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} x_i^2 - n(\overline{x})^2$$

$$SS_{xy} = \sum_{i=1}^{n} (y_i - \overline{y})(x_i - \overline{x}) = \sum_{i=1}^{n} x_i y_i - n\overline{xy}$$

$$\hat{\beta}_1 = \frac{SS_{xy}}{SS_{xy}} \quad \hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$$

Linear Regression Assumptions

Assumption 1 The mean of the probability distribution of ε is 0. $E(\varepsilon) = 0$

Assumption 2 The variance of the probability distribution of is constant. $var(\varepsilon) = \sigma^2$

Assumption 3 The probability distribution of ε is normal. $\varepsilon \sim N(0, \sigma^2)$

Assumption 4 The errors associated with any two observations are independent.

$$f(\varepsilon_i, \varepsilon_i) = f(\varepsilon_i) f(\varepsilon_i)$$

Regression Line Standard Error

$$s^{2} = \frac{SSE}{Degrees \ of \ Freedom} = \frac{SSE}{n-2} , \quad s = \sqrt{s^{2}}$$

$$SSE = \sum_{i=1}^{n} (y_{i} - \beta_{0} - \beta_{1}x_{i})^{2} = SS_{yy} - \hat{\beta}_{1}SS_{xy}$$

$$SS_{yy} = \sum_{i=1}^{n} (y_{i} - \overline{y})^{2} = \sum_{i=1}^{n} y_{i}^{2} - n(\overline{y})^{2}$$

Slope Hypothesis Test and Confidence Interval

$$H_0: \beta_1 = 0$$
 $H_a: \beta_1 \neq 0$
 $t = \frac{\hat{\beta}_1 - 0}{s / \sqrt{SS_{xx}}}$
 $\hat{\beta}_1 \pm t_{\alpha/2} \frac{s}{\sqrt{SS_{xx}}}$
 $df = n-2$

Correlation

$$r = \frac{SS_{xy}}{\sqrt{SS_{xx}SS_{yy}}} \quad SS_{xx} = \sum_{i=1}^{n} x_{i}^{2} - n(\overline{x})^{2} \quad SS_{yy} = \sum_{i=1}^{n} y_{i}^{2} - n(\overline{y})^{2} \quad SS_{xy} = \sum_{i=1}^{n} x_{i}y_{i} - n\overline{xy}$$

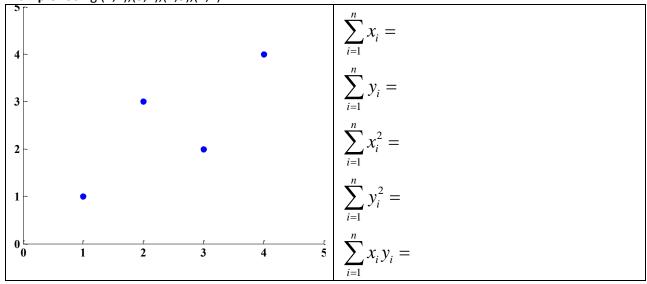
$$H_{0}: \rho = 0$$

$$H_{a}: \rho \neq 0 \quad t = r \frac{\sqrt{n-2}}{\sqrt{1-r^{2}}}, \text{ df=n-2}$$

$$r^{2} = \frac{SS_{yy} - SSE}{SS_{yy}} = \frac{Explained \ sample \ variability}{Total \ sample \ variability}$$

MATH 2780 Chapter 3 Worksheet

Example: Using (1,1),(3,2),(2,3),(4,4).



- a) Compute and draw the point (\overline{x} , \overline{y}) on the scatterplot.
- b) Draw your best guess for a least squares regression line.
- c) Compute SS_{xx} , SS_{yy} , and SS_{xy} .

$$SS_{xx} =$$

$$SS_{yy} =$$

$$SS_{xy} =$$

d) Use SS_{xx} , SS_{yy} , and SS_{xy} to compute estimates of β_0 and β_1 .

$$\hat{\beta}_1 =$$

$$\hat{\beta}_0 =$$

e) Write your regression equation and draw your regression Line on the Graph.

$$\hat{y} = + x$$

f) Compute SSE and s^2 .

$$SSE =$$

$$s^2 =$$

$$s =$$

g) Test the hypothesis that H_0 : $\beta_1 = 0$ vs. H_a : $\beta_1 \neq 0$. df = n-2.

$$t =$$

$$t_{\alpha/2, n-2} =$$

h) Compute a 95% confidence interval for β_1 .

$$r =$$

i) Test the hypothesis that H_0 : $\rho = 0$ vs. H_a : $\rho \neq 0$. df=n-2.

$$t =$$

$$t_{\alpha/2,n-2} =$$

j) Compute r^2 .