MATH 2780 Chapter 3 Worksheet

Summary
A First Order (Straight-Line) Model

 $y = \beta_0 + \beta_1 x + \varepsilon$

where

- $y =$ **Dependent** variable (variable to be modeled-sometimes called the response variable)
- = Independent variable (variable used as predictor of y) \boldsymbol{x}

 $E(y|x) = \beta_0 + \beta_1 x$

- ε = (epsilon) = Random error component
- β_0 = (beta zero) = y-intercept of the line
- β_1 = (beta one) = **Slope** of the line.

Coefficient Estimation

$$
SS_{xx} = \sum_{i=1}^{n} (x_i - \overline{x})^2 = \sum_{i=1}^{n} x_i^2 - n(\overline{x})^2
$$

\n
$$
SS_{xy} = \sum_{i=1}^{n} (y_i - \overline{y})(x_i - \overline{x}) = \sum_{i=1}^{n} x_i y_i - n\overline{xy}
$$

\n
$$
\hat{\beta}_1 = \frac{SS_{xy}}{SS_{xx}} \quad \hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}
$$

Linear Regression Assumptions
Assumption 1 The mean of the probability distribution of ε is 0. $E(\varepsilon) = 0$ **Assumption 2** The variance of the probability distribution of is constant. $var(\varepsilon) = \sigma^2$ **Assumption 3** The probability distribution of ε is normal. $\varepsilon \sim N(0, \sigma^2)$ Assumption 4 The errors associated with any two observations are independent.

 $f(\varepsilon_i,\varepsilon_j) = f(\varepsilon_i) f(\varepsilon_j)$

Regression Line Standard Error

$$
s^{2} = \frac{SSE}{Degrees \ of \ Freedom} = \frac{SSE}{n-2} , s = \sqrt{s^{2}}
$$

\n
$$
SSE = \sum_{i=1}^{n} (y_{i} - \beta_{0} - \beta_{1}x_{i})^{2} = SS_{yy} - \hat{\beta}_{1}SS_{xy}
$$

\n
$$
SS_{yy} = \sum_{i=1}^{n} (y_{i} - \overline{y})^{2} = \sum_{i=1}^{n} y_{i}^{2} - n(\overline{y})^{2}
$$

Slope Hypothesis Test and Confidence Interval

$$
H_0: \beta_1 = 0 \quad t = \frac{\hat{\beta}_1 - 0}{s / \sqrt{SS_{xx}}} \qquad \hat{\beta}_1 \pm t_{\alpha/2} \frac{s}{\sqrt{SS_{xx}}}, \frac{d}{dt} = n-2
$$

Correlation

$$
r = \frac{SS_{xy}}{\sqrt{SS_{xx}SS_{yy}}} \quad SS_{xx} = \sum_{i=1}^{n} x_i^2 - n(\overline{x})^2 \quad SS_{yy} = \sum_{i=1}^{n} y_i^2 - n(\overline{y})^2 \quad SS_{xy} = \sum_{i=1}^{n} x_i y_i - n\overline{xy}
$$

\n
$$
H_0: \rho = 0 \quad t = r \frac{\sqrt{n-2}}{\sqrt{1-r^2}},
$$

\n
$$
r^2 = \frac{SS_{yy} - SSE}{SS_{yy}} = \frac{Explained \, sample \, variability}{Total \, sample \, variability}
$$

Example: Using (1,1),(3,2),(2,3),(4,4).

- a) Compute and draw the point (x, y) on the scatterplot.
- b) Draw your best guess for a least squares regression line.
- c) Compute *SSxx*, *SSyy*, and *SSxy*.

 $SS_{xx} =$ $SS_{yy} =$ $SS_{\rm xy} =$

d) Use SS_{xx} , SS_{yy} , and SS_{xy} to compute estimates of β_0 and β_1 .

$$
\hat{\beta}_1 = \hat{\beta}_0 =
$$

e) Write your regression equation and draw your regression Line on the Graph.

 $t_{\alpha/2, n-2} =$

$$
\hat{y} = + x
$$

f) Compute *SSE* and *s*².

$$
SSE =
$$

$$
s^2 =
$$

$$
s =
$$

g) Test the hypothesis that H_0 : $\beta_1 = 0$ *vs.* H_a : $\beta_1 \neq 0$. $d\beta = n-2$.

$$
t =
$$

- h) Compute a 95% confidence interval for *β*1. $r =$
- i) Test the hypothesis that H_0 : $\rho = 0$ *vs.* H_a : $\rho \neq 0$. $df=n-2$. $t =$ $t_{\alpha/2, n-2} =$
- j) Compute r^2 .