Class 27

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

Review Chapters 9-12 (Final Exam Chapters)

Just the highlights!

Recap Chapter 9

9: Inferences Involving One Population

9.1 Inference about the Mean μ (σ Unknown)

In Chapter 8, we performed hypothesis tests on the mean by

- 1) assuming that \overline{x} was normally distributed (n "large"),
- 2) assuming the hypothesized mean μ_0 were true,
- 3) assuming that σ was known, so that we could form

$$z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$
 which with 1) – 3) has standard normal dist.

9: Inferences Involving One Population 9.1 Inference about the Mean μ (σ Unknown)

However, in real life, we never know σ for

$$z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$

so we would like to estimate σ by s, then use

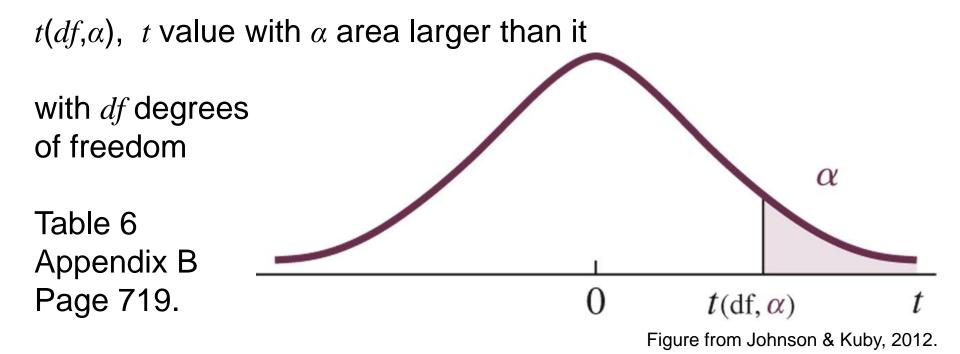
$$t^* = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \quad .$$

But t^* does not have a standard normal distribution.

It has what is called a Student t-distribution.

9: Inferences Involving One Population 9.1 Inference about the Mean μ (σ Unknown) Using the t-Distribution Table

Finding critical value from a Student *t*-distribution, df=n-1



 $t(df, \alpha)$

9: Inferences Involving One Population

9.1 Inference about the Mean μ (σ Unknown)

Example: Find the value of t(10,0.05),

df=10, α =0.05.

	ene iai		SAN	AND DESCRIPTION OF THE PERSONS	March 1995	
	0.25	0.10	0.05	0.025	0.01	0.005
Area in	Two Tails					
df	0.50	0.20	0.10	0.05	0.02	0.01
3 4 5	0.765 0.741 0.727	1.64 1.53 1.48	2.35 2.13 2.02	3.18 2.78 2.57	4.54 3.75 3.36	5.84 4.60 4.03
6 7 8 9	0.718 0.711 0.706 0.703 0.700	1.44 1.41 1.40 1.38 1.37	1.94 1.89 1.86 1.83	2.45 2.36 2.31 2.26 2.23	3.14 3.00 2.90 2.82 2.76	3.71 3.50 3.36 3.25 3.17
35 40 50 70 100	0.682 0.681 0.679 0.678 0.677	1.31 1.30 1.30 1.29 1.29	1.69 1.68 1.68 1.67 1.66	2.03 2.02 2.01 1.99 1.98	2.44 2.42 2.40 2.38 2.36	2.72 2.70 2.68 2.65 2.63
df > 100	0.675	1.28	1.65	1.96	2.33	2.58

Table 6 Appendix B Page 719.

0

Go to 0.05
One Tail
column and
down to 10
df row.

Figures from Johnson & Kuby, 2012.

9: Inferences Involving One Population 9.1 Inference about the Mean μ (σ Unknown)

Recap 9.1:

Essentially have new critical value, $t(df,\alpha)$ to look up

in a table when σ is unknown. Used same as before.

 $\frac{\sigma \text{ assumed known}}{\overline{x} \pm z(\alpha/2) \frac{\sigma}{\sqrt{n}}} \qquad \frac{\sigma \text{ assumed unknown}}{\overline{x} \pm t(df, \alpha/2) \frac{s}{\sqrt{n}}}$ $z^* = \frac{\overline{x} - \mu_0}{\sigma/\sqrt{n}} \qquad t^* = \frac{\overline{x} - \mu_0}{s/\sqrt{n}}$

We talked about a Binomial experiment with two outcomes.

$$P(x) = \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x} \qquad n = 1, 2, 3, ... x = 0, 1, ..., n \qquad 0 \le p \le 1$$

n = # of trials, x = # of successes, p = prob. of success

Sample Binomial Probability

i.e. number of H out of n flips

$$p' = \frac{x}{n} \tag{9.3}$$

where x is the number of successes in n trials.

Background

In Statistics, mean $(cx) = c\mu$ and variance $(cx) = c^2\sigma^2$.

With
$$p' = \frac{x}{n}$$
, the constant is $c = \frac{1}{n}$, and $mean(\frac{x}{n}) = (\frac{1}{n})mean(x) = (\frac{1}{n})np = p = \mu_{p'}$

and the variance of $p' = \frac{x}{n}$ is variance $\left(\frac{x}{n}\right) = \frac{\sigma^2}{n^2} = \frac{p(1-p)}{n}$

standard error of
$$p' = \frac{x}{n}$$
 is $\sigma_{p'} = \sqrt{\frac{\sigma^2}{n^2}} = \sqrt{\frac{p(1-p)}{n}}$.

That is where 1. and 2. in the green box below come from

If a random sample of size n is selected from a large population with p=P(success), then the sampling distribution of p' has:

- 1. A mean μ_{p} equal to p
- 2. A standard error $\sigma_{p'}$ equal to $\sqrt{\frac{p(1-p)}{n}}$
- 3. An approximately normal distribution if *n* is sufficiently "large."

For a confidence interval, we would use

Confidence Interval for a Proportion

$$p'-z(\alpha/2)\sqrt{\frac{p'q'}{n}} \quad \text{to} \quad p'+z(\alpha/2)\sqrt{\frac{p'q'}{n}}$$
 where $p'=\frac{x}{n}$ and $q'=(1-p')$. (9.6)

Since we didn't know the true value for p, we estimate it by p'.

This is of the form point estimate \pm some amount.

9: Inferences Involving One Population 9.2 Inference about the Binomial Probability of Success Determining the Sample Size

Using the error part of the CI, we determine the sample size n.

Maximum Error of Estimate for a Proportion

$$E = z(\alpha/2)\sqrt{\frac{p'(1-p')}{n}}$$
(9.7)

Sample Size for 1- α Confidence Interval of p

q*=1-p*

$$n = \frac{\left[z(\alpha/2)\right]^2 p * (1-p^*)}{E^2}$$
 From prior data, experience, gut feelings, séance. Or use 1/2. (9.8)

where p^* and q^* are provisional values used for planning.

9: Inferences Involving One Population 9.2 Inference about the Binomial Probability of Success Hypothesis Testing Procedure

We can perform hypothesis tests on the proportion

$$H_0$$
: $p \ge p_0$ vs. H_a : $p < p_0$

$$H_0$$
: $p \le p_0$ vs. H_a : $p > p_0$

$$H_0$$
: $p = p_0$ vs. H_a : $p \neq p_0$

Test Statistic for a Proportion *p*

$$z^* = \frac{p' - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

with
$$p' = \frac{x}{n}$$

(9.9)

9: Inferences Involving One Population 9.3 Inference about the Variance and Standard Deviation

We can perform hypothesis tests on the variance.

$$H_0: \sigma^2 \ge \sigma_0^2 \text{ vs. } H_a: \sigma^2 < \sigma_0^2$$

$$H_0$$
: $\sigma^2 \le \sigma_0^2$ vs. H_a : $\sigma^2 > \sigma_0^2$

$$H_0$$
: $\sigma^2 = \sigma_0^2$ vs. H_a : $\sigma^2 \neq \sigma_0^2$

For this hypothesis test, use the χ^2 distribution \longrightarrow

- 1. χ^2 is nonnegative
- 2. χ^2 is not symmetric, skewed to right
- 3. χ^2 is distributed to form a family each determined by df=n-1.

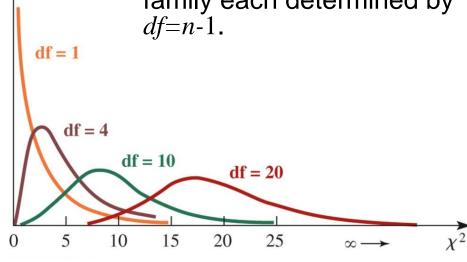


Figure from Johnson & Kuby, 2012.

9: Inferences Involving One Population

9.3 Inference about the Variance and Standard Deviation

Test Statistic for Variance (and Standard Deviation)

$$\chi^{2*} = \frac{(n-1)s^{2}}{\sigma_{0}^{2}} \underset{\text{hypothesized population variance}}{\longleftarrow} \text{with } df = n-1. \tag{9.10}$$

Will also need critical values.

$$P(\chi^2 > \chi^2(df,\alpha)) = \alpha$$

Table 8
Appendix B
Page 721

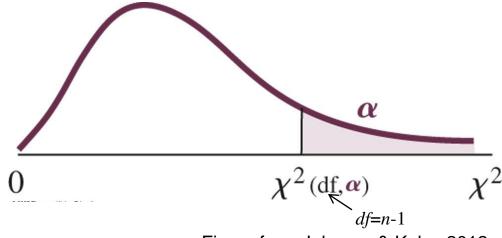


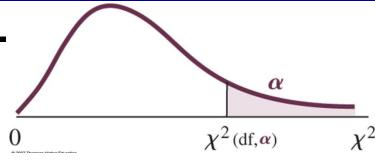
Figure from Johnson & Kuby, 2012.

a) Area to the Right

9: Inferences Involving One Pop.

Example: Find $\chi^2(20,0.05)$.

Table 8, Appendix B, Page 721.



uj Ai	a) Area to the Right												
	0.995	0.99	0.975	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.025	0.01	0.005
b) Ar	b) Area to the Left (the Cumulative Area) Median												
df	0.005	0.01	0.025	0.05	0.10	0.25	0.50	0.75	0.90	0.95	0.975	0.99	0.995
1 2 3 4 5	0.0000393 0.0100 0.0717 0.207 0.412	0.000157 0.0201 0.115 0.297 0.554	0.000982 0.0506 0.216 0.484 0.831	0.00393 0.103 0.352 0.711 1.15	0.0158 0.211 0.584 1.06 1.61	0.102 0.575 1.21 1.92 2.67	0.455 1.39 2.37 3.36 4.35	1.32 2.77 4.11 5.39 6.63	2.71 4.61 6.25 7.78 9.24	3.84 5.99 7.81 9.49 11.1	5.02 7.38 9.35 11.1 12.8	6.63 9.21 11.3 13.3 15.1	7.88 10.6 12.8 14.9 16.7
6 7 8 9	0.676 0.989 1.34 1.73 2.16	0.872 1.24 1.65 2.09 2.56	1.24 1.69 2.18 2.70 3.25	1.64 2.17 2.73 3.33 3.94	2.20 2.83 3.49 4.17 4.87	3.45 4.25 5.07 5.90 6.74	5.35 6.35 7.34 8.34 9.34	7.84 9.04 10.2 11.4 12.5	10.6 12.0 13.4 14.7 16.0	12.6 14.1 15.5 16.9 18.3	14.4 16.0 17.5 19.0 20.5	16.8 18.5 20.1 21.7 23.2	18.5 20.3 22.0 23.6 25.2
11 12 13 14 15	2.60 3.07 3.57 4.07 4.60	3.05 3.57 4.11 4.66 5.23	3.82 4.40 5.01 5.63 6.26	4.57 5.23 5.89 6.57 7.26	5.58 6.30 7.04 7.79 8.55	7.58 8.44 9.30 10.2 11.0	10.34 11.34 12.34 13.34 14.34	13.7 14.8 16.0 17.1 18.2	17.3 18.5 19.8 21.1 22.3	19.7 21.0 22.4 23.7 25.0	21.9 23.3 24.7 26.1 27.5	24.7 26.2 27.7 29.1 30.6	26.8 28.3 29.8 31.3 32.8
16 17 18 19 20	5.14 5.70 6.26 6.84 7.43	5.81 6.41 7.01 7.63 8.26	6.91 7.56 8.23 8.91 9.59	7.96 8.67 9.39 10.1 10.9	9.31 10.1 10.9 11.7 12.4	11.9 12.8 13.7 14.6 15.5	15.34 16.34 17.34 18.34 19.34	19.4 20.5 21.6 22.7 23.8	23.5 24.8 26.0 27.2 28.4	26.3 27.6 28.9 30.1 31.4	28.8 30.2 31.5 32.9 34.2	32.0 33.4 34.8 36.2 37.6	34.3 35.7 37.2 38.6 40.0

Figures from Johnson & Kuby, 2012.

Recap Chapter 10

10: Inferences Involving Two Populations 10.2 Inference for Mean Difference Two Dependent Samples Confidence Interval Procedure

Paired Difference

$$d = x_1 - x_2 (10.1)$$

$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_{i} \qquad s_{d}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (d_{i} - \bar{d})^{2} \qquad \mu_{\bar{d}} = \mu_{d} \quad \sigma_{\bar{d}} = \frac{\sigma_{d}}{\sqrt{n}}$$

With σ_d unknown, a 1- α confidence interval for $\mu_d = (\mu_1 - \mu_2)$ is:

Confidence Interval for Mean Difference (Dependent Samples)

$$\overline{d} - t(df, \alpha/2) \frac{s_d}{\sqrt{n}}$$
 to $\overline{d} + t(df, \alpha/2) \frac{s_d}{\sqrt{n}}$ where $df = n-1$ (10.2)

10: Inferences Involving Two Populations 10.2 Inference for Mean Difference Two Dependent Samples

Car	1	2	3	4	5	6
Brand A	125	64	94	38	90	106
Brand B	133	65	103	37	102	115

Example:

Construct a 95% CI for mean difference in Brand B – A tire wear.

$$d_i$$
's: 8, 1, 9, -1, 12, 9
$$n = 6 \qquad df = 5 \qquad t(df, \alpha/2) = 2.57$$

$$\bar{d} = 6.3 \qquad \alpha = 0.05 \qquad s_d^2 = \frac{1}{n}$$

$$s_d = 5.1 \qquad \bar{d} \pm t(df, \alpha/2) \frac{s_d}{\sqrt{n}} \longrightarrow (0.090, 11.7)$$

$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_{i}$$

$$s_{d}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (d_{i} - \bar{d})^{2}$$

Figure from Johnson & Kuby, 2012.

10: Inferences Involving Two Populations 10.2 Inference for Mean Difference Two Dependent Samples

n = 6 8, 1, 9, -1, 12, 9

Car	1	2	3	4	5	6
Brand A	125	64	94	38	90	106
Brand B	133	65	103	37	102	115

Example:

Test mean difference of Brand B minus Brand A is zero.

Step 1
$$H_0$$
: μ_d =0 vs. H_a : μ_d \neq 0

Step 2

$$df = 5 \qquad t^* = \frac{\overline{d} - \mu_{d0}}{s_d / \sqrt{n}}$$

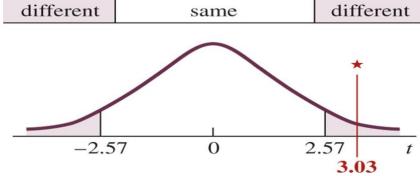
$$\alpha = .05$$

Step 3
$$\bar{d} = 6.3$$

 $s_d = 5.1$ $t^* = \frac{6.3 - 0}{5.1/\sqrt{6}} = 3.03$

Step 4
$$t(df, \alpha/2) = 2.57$$

Step 5 Since $t^* > t(df, \alpha/2)$, reject H_0



Conclusion: Significant difference in tread wear at .05 level.

Figures from Johnson & Kuby, 2012.

10: Inferences Involving Two Populations 10.3 Inference for Mean Difference Two Independent Samples **Confidence Interval Procedure**

With σ_1 and σ_2 unknown, a 1- α confidence interval for $\mu_1 - \mu_2$ is:

Confidence Interval for Mean Difference (Independent

Samples)
$$(\overline{x}_{1} - \overline{x}_{2}) - t(df, \alpha/2) \sqrt{\left(\frac{s_{1}^{2}}{n_{1}}\right) + \left(\frac{s_{2}^{2}}{n_{2}}\right)} \text{ to } (\overline{x}_{1} - \overline{x}_{2}) + t(df, \alpha/2) \sqrt{\left(\frac{s_{1}^{2}}{n_{1}}\right) + \left(\frac{s_{2}^{2}}{n_{2}}\right)}$$

where df is either calculated or smaller of df_1 , or df_2

Actually, this is for $\sigma_1 \neq \sigma_2$.

If using a computer program.

If not using a computer program.

10: Inferences Involving Two Populations

10.3 Inference Mean Difference Confidence Interval

Sample	Number	Mean	Standard Deviation
Female (Male (m	$ \begin{array}{ccc} n_f & n_f = 20 \\ n_m = 30 \end{array} $	$\frac{\overline{x}_f}{\overline{x}_m^f} = 63.8$	$s_f = 2.18$ $s_m = 1.92$

Example:

Interested in difference in mean heights between men and women. The heights of 20 females and 30 males is measured. Construct a 95% confidence interval for $\mu_m - \mu_f$, $\sigma_m \& \sigma_f$ unknown

$$(\overline{x}_{m} - \overline{x}_{f}) \pm t(df, \alpha/2) \sqrt{\left(\frac{s_{m}^{2}}{n_{m}}\right) + \left(\frac{s_{f}^{2}}{n_{f}}\right)}$$

$$(69.8 - 63.8) \pm 2.09 \sqrt{\left(\frac{(1.92)^{2}}{30}\right) + \left(\frac{(2.18)^{2}}{20}\right)}$$
therefore 4.75 to 7.25

$$\alpha = 0.05$$

 $t(19,.025) = 2.09$

Figure from Johnson & Kuby, 2012.

10: Inferences Involving Two Populations 10.3 Inference for Mean Difference Two Independent Samples Hypothesis Testing Procedure 27 values

Step 1

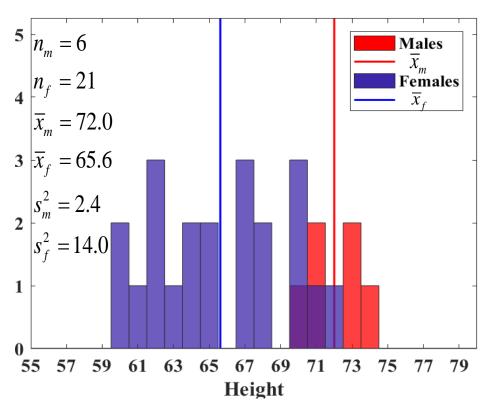
$$H_0$$
: $\mu_f = \mu_m$ VS. H_a : $\mu_f \neq \mu_m$

Step 2

 $t^* = \frac{(\overline{x}_m - \overline{x}_f) - (\mu_m - \mu_f)}{\sqrt{\left(\frac{s_m^2}{n_m}\right) + \left(\frac{s_f^2}{n_f}\right)}}$

Step 3

 $t^* = \frac{(72.0 - 65.6) - (0)}{\sqrt{\left(\frac{2.4}{6}\right) + \left(\frac{14.0}{21}\right)}} = 6.17$



 $t(df, \alpha/2) = 2.57$ Step 5 Reject $H_06.17 > 2.57$, height males \neq height females

10: Inferences Involving Two Populations 10.4 Inference for Difference between Two Proportions

Explained

That is where 1. and 2. in the green box below come from

If independent samples of size n_1 and n_2 are drawn ... with $p_1=P_1$ (success) and $p_2=P_2$ (success), then the sampling distribution of $p_1'-p_2'$ has these properties:

1. mean
$$\mu_{p_1'-p_2'} = p_1 - p_2$$

2. standard error $\sigma_{p_1'-p_2'} = \sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}}$ (10.10)

3. approximately normal dist if n_1 and n_2 are sufficiently large. ie I $n_1, n_2 > 20$ II $n_1p_1, n_1q_1, n_2p_2, n_2q_2 > 5$ III sample < 10% of pop

10: Inferences Involving Two Populations 10.4 Inference for Difference between Two Proportions Confidence Interval Procedure

Assumptions for ... difference between two proportions p_1 - p_2 : The n_1 ... and n_2 random observations ... are selected independently from two populations that are not changing

Confidence Interval for the Difference between Two Proportions $p_1 - p_2$

$$(p_1' - p_2') - z(\alpha/2) \sqrt{\frac{p_1'q_1'}{n_1} + \frac{p_2'q_2'}{n_2}} \quad \text{to} \quad (p_1' - p_2') + z(\alpha/2) \sqrt{\frac{p_1'q_1'}{n_1} + \frac{p_2'q_2'}{n_2}}$$
where $p_1' = \frac{x_1}{n_1}$ and $p_2' = \frac{x_2}{n_2}$. (10.11)

10: Inferences Involving Two Populations 10.4 Inference for Difference between Two Proportions Confidence Interval Procedure

Example: Another Semester

Construct a 99% CI for proportion of female A's minus male A's difference $p_f - p_m$.

120 values
$$z(\alpha/2) = 2.58$$
 $(p'_f - p'_m) \pm z(\alpha/2) \sqrt{\frac{p'_f q'_f}{n_f} + \frac{p'_m q'_m}{n_m}}$
 $n_m = 52$ $p'_f = \frac{x_f}{n_f} = \frac{43}{68} = .62$ $(.62 - .40) \pm 2.58 \sqrt{\frac{(.62)(.38)}{68} + \frac{(.40)(.60)}{52}}$
 $x_m = 21$ $y'_m = \frac{x_m}{n_m} = \frac{21}{52} = .40$ $-.003$ to $.460$

10: Inferences Involving Two Populations 10.4 Inference for Difference between Two Proportions **Hypothesis Testing Procedure**

We can perform hypothesis tests on the proportion

$$H_0: p_1 \ge p_2 \text{ vs. } H_a: p_1 < p_2$$

$$H_0: p_1 \le p_2 \text{ vs. } H_a: p_1 > p_2$$

$$H_0$$
: $p_1 = p_2$ vs. H_a : $p_1 \neq p_2$

$$\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2} = pq \left[\frac{1}{n_1} + \frac{1}{n_2} \right]$$

when
$$p_1 = p_2 = p$$
.

Test Statistic for the Difference between two Proportions-

$$z^* = \frac{(p_1' - p_2') - (p_{10} - p_{20})}{\sqrt{pq \left[\frac{1}{n_1} + \frac{1}{n_2}\right]}} \qquad \text{Population Proportions Known}$$

$$p_1' = \frac{x_1}{n_1} \quad p_2' = \frac{x_2}{n_2} \qquad (10.12)$$

$$\sqrt{pq\left[\frac{1}{n_1} + \frac{1}{n_2}\right]}$$

$$p_1' = \frac{x_1}{n_1}$$
 $p_2' = \frac{x_2}{n_2}$

(10.12)

10: Inferences Involving Two Populations 10.4 Inference for Difference between Two Proportions Hypothesis Testing Procedure

Test Statistic for the Difference between two Proportions-Population Proportions **UnKnown**

$$z^* = \frac{(p_1' - p_2') - (p_{10} - p_{20})}{\sqrt{p_p' q_p' \left[\frac{1}{n_1} + \frac{1}{n_2}\right]}}$$

$$p_p \text{ estimated}$$
(10.15)

where we assume $p_1=p_2$ and use pooled estimate of proportion

$$p'_{1} = \frac{x_{1}}{n_{1}} \quad p'_{2} = \frac{x_{2}}{n_{2}} \qquad \frac{p_{1}q_{1}}{n_{1}} + \frac{p_{2}q_{2}}{n_{2}} = pq \left[\frac{1}{n_{1}} + \frac{1}{n_{2}} \right] \qquad p'_{p} = \frac{x_{1} + x_{2}}{n_{1} + n_{2}} \qquad q'_{p} = 1 - p'_{p}$$

10: Inferences Involving Two Populations 10.4 Inference for Difference between Two Proportions **Hypothesis Testing Procedure**

Step 1 $H_0: p_s - p_c \le 0 \text{ vs. } H_a: p_s - p_c > 0$

Step 2
$$z^* = \frac{(p'_s - p'_c) - (p_{0s} - p_{0c})}{\sqrt{p'_p q'_p \left[\frac{1}{n_s} + \frac{1}{n_c}\right]}}$$

$$\alpha = .05$$

$$z^* = \frac{(.10 - .04) - (0)}{\sqrt{(.07)(.93) \left[\frac{1}{150} + \frac{1}{150}\right]}}$$

Product	Number Defective	Number Checked
Salesperson's	$x_s = 15$	$n_s = 150$
Competitor's	$x_c = 6$	$n_c = 150$

Step 3
$$z^* = \frac{(.10 - .04) - (0)}{\sqrt{(.07)(.93) \left[\frac{1}{150} + \frac{1}{150}\right]}} = 2.04$$

$$p'_s = \frac{x_s}{n_s} = \frac{15}{150}$$

$$p'_s = \frac{x_c}{n_s} = \frac{6}{150}$$

$$p'_p = \frac{x_s + x_c}{n_s + n_c} = \frac{15 + 6}{150 + 150}$$

Step 4

$$z(\alpha) = 1.65$$

Step 5 Reject
$$H_0$$
 < .05
.02 < p - $value$ < .023 or 2.04 > 1.65

Figure from Johnson & Kuby, 2012.

10: Inferences Involving Two Populations 10.5 Inference for Ratio of Two Variances Two Ind. Samples Hypothesis Testing Procedure

We can perform hypothesis tests on two variances

$$H_0: \sigma_1^2 \ge \sigma_2^2 \text{ vs. } H_a: \sigma_1^2 < \sigma_2^2$$

$$H_0: \sigma_1^2 \le \sigma_2^2$$
 vs. $H_a: \sigma_1^2 > \sigma_2^2$

$$H_0$$
: $\sigma_1^2 = \sigma_2^2$ vs. H_a : $\sigma_1^2 \neq \sigma_2^2$

Assumptions: Independent samples from normal distribution

Test Statistic for Equality of Variances

$$F^* = \frac{S_n^2}{S_d^2}$$

with $df_n = n_n - 1$ and $df_d = n_d - 1$.

(10.16)

Use new table to find areas for new statistic.

 $F(\mathrm{df}_n,\mathrm{df}_d,\alpha)$

10: Inferences Involving Two Pops.

10.5 Inference Ratio of Two Variances

Example: Find F(5,8,0.05). $df_n = n_n - 1$ $df_d = n_d - 1$

$$df_n = n_n - 1 \qquad df_d = n_d - 1$$

Table 9, Appendix B, Page 722.

Degrees of Freedom for Numerator df_n $\alpha = 0.05$

2 19.3 2 9.01	234. 237. 239. 241. 242 19.3 19.4 19.4 19.4 19.4 8.94 8.89 8.85 8.81 8.79 6.16 6.09 6.04 6.00 5.96
	4.95 4.88 4.82 4.77 4.74
2 3.97 4 3.69 3 3.48	4.28 4.21 4.15 4.10 4.06 3.87 3.79 3.73 3.68 3.64 3.58 3.50 3.44 3.39 3.35 3.37 3.29 3.23 3.18 3.14 3.22 3.14 3.07 3.02 2.98 Figures from Johnson & Kuby, 2012
	4 (3.69)

10: Inferences Involving Two Populations 10.5 Inference for Ratio of Two Variances Two Ind. Samples Hypothesis Testing Procedure

One tailed tests: Arrange $H_0 \& H_a$ so H_a is always "greater than"

$$H_0: \sigma_1^2 \ge \sigma_2^2 \text{ VS. } H_a: \sigma_1^2 < \sigma_2^2 \longrightarrow H_0: \sigma_2^2 / \sigma_1^2 \le 1 \text{VS. } H_a: \sigma_2^2 / \sigma_1^2 > 1 \qquad F^* = \frac{s_2^2}{s_v^2}$$

$$H_0: \sigma_1^2 \le \sigma_2^2 \text{ VS. } H_a: \sigma_1^2 > \sigma_2^2 \qquad H_0: \sigma_1^2 / \sigma_2^2 \le 1 \text{VS. } H_a: \sigma_1^2 / \sigma_2^2 > 1 \qquad F^* = \frac{s_1^2}{s_2^2}$$

$$\text{Reject } H_0: f^* = \frac{s_n^2}{s_n^2} > F(df_n, df_d, \alpha).$$

Two tailed tests: put larger sample variance s^2 in numerator

$$H_0: \sigma_1^2 = \sigma_2^2 \text{ vs. } H_a: \sigma_1^2 \neq \sigma_2^2 \implies H_0: \sigma_n^2 / \sigma_d^2 = 1 \text{ vs. } H_a: \sigma_n^2 / \sigma_d^2 \neq 1$$

$$\sigma_n^2 = \sigma_1^2 \text{ if } s_1^2 > s_2^2 \text{ of } \sigma_n^2 = \sigma_2^2 \text{ if } s_2^2 > s_1^2$$

Reject H_0 if $F^* = s_n^2 / s_d^2 > F(df_n, df_d, \alpha/2)$.

10: Inferences Involving Two Populations 10.5 Inference for Ratio of Two Variances Two Ind. Samples

27 values Is variance of female heights greater than that of males? $\alpha = .01$

Step 1

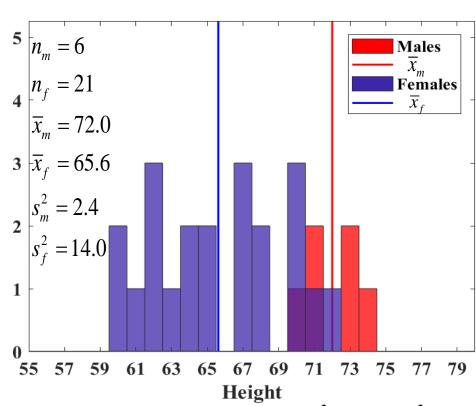
$$H_0: \sigma_f^2 \le \sigma_m^2$$
 vs. $H_a: \sigma_f^2 > \sigma_m^2$
 $H_0: \sigma_f^2 / \sigma_m^2 \le 1$ vs. $H_a: \sigma_f^2 / \sigma_m^2 > 1$

Step 2
$$F^* = \frac{S_f^2}{S_m^2}$$
 $df_m = 5$ $df_f = 20$ $\alpha = .01$

Step 3

Step 4
$$F^* = 14.0 / 2.4 = 5.83$$

$$F(20,5,.01) = 9.55$$

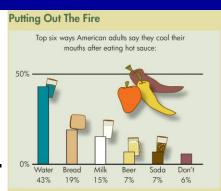


Step 5 Do not reject H_0 since 5.83 < 9.55 and conclude σ_f^2 not $> \sigma_m^2$.

Recap Chapter 11

11: Applications of Chi-Square11.1 Chi-Square Statistic Cooling a Great Hot Taste

Quite often we have qualitative data in categories.



Example: Cooling mouth after hot spicy food.

Method	Water	Bread	Milk	Beer	Soda	Nothing	Other
Number	73	29	35	19	20	13	11

11.1 Chi-Square Statistic Data Setup

Example: Cooling mouth after hot spicy food.

Method	Water	Bread	Milk	Beer	Soda	Nothing	Other
Number	73	29	35	19	20	13	11

Data set up: k cells C_1, \ldots, C_k that n observations sorted into

Observed frequencies in each cell O_1, \ldots, O_k .

 $O_1 + ... + O_k = n$

Expected frequencies in each cell $E_1, ..., E_k$.

 E_1 +...+ E_k =n

Cell	C_{1}	C_2			-	C_k
Observed	O_1	O_2				O_k
Expected	E_{1}	E_{2}	-	-		E_k

11.1 Chi-Square Statistic Data Setup

Example: Cooling mouth after hot spicy food.

Method	Water	Bread	Milk	Beer	Soda	Nothing	Other
Number	73	29	35	19	20	13	11

Data set up: k cells C_1, \ldots, C_k that n observations sorted into

Observed frequencies in each cell O_1, \ldots, O_k .

 $O_1 + ... + O_k = n$

Expected frequencies in each cell $E_1, ..., E_k$.

 E_1 +...+ E_k =n

Cell	C_{1}	C_2	-		C_k
Observed	O_1	O_2			O_k
Expected	E_{1}	E_{2}		•	E_k

11.2 Inferences Concerning Multinomial Experiments

Example: We work for Las Vegas Gaming Commission. We have received many complaints that dice at particular casino are loaded (weighted, not fair). We confiscate all dice and test one. We roll it n=60 times. We get following data.

Cell, i	1	2	3	4	5	6
Observed, O_i	7	12	10	12	8	11
Expected, E_i	10	10	10	10	10	10

Expected Value for Multinomial Experiment:

$$E_i = np_i$$

(11.3)

11.2 Inferences Concerning Multinomial Experiments

Example: We work for Las Vegas Gaming Commission. We have received many complaints that dice at particular casino are loaded (weighted, not fair). We confiscate all dice and test one. We roll it n=60 times. We get following data.

Cell, i	1	2	3	4	5	6
Observed, O_i	7	12	10	12	8	11
Expected, E_i	10	10	10	10	10	10

Expected Value for Multinomial Experiment:

$$E_i = np_i$$

(11.3)

11: Applications of Chi-Square 11.3 Inferences Concerning Contingency Tables Test of Independence

Is "Preference for math-science, social science, or humanities" ... "independent of the gender of a college student?"

Sample Results for Gender and Subject Preference

	Favorite Subject Area							
Gender	Math-Science (MS)	Social Science (SS)	Humanities (H)	Total				
Male (M) Female (F)	3 <i>7</i> 35	41 72	44 71	122 178				
Total	72	113	115	300				

Figure from Johnson & Kuby, 2012.

11: Applications of Chi-Square 11.3 Inferences Concerning Contingency Tables *Test of Independence*

Is "Preference for math-science, social science, or humanities" ... "independent of the gender of a college student?"

There is a Hypothesis test (of independence) to determine this.

Is Favorite Subject independent of Gender.

Similar to Example with the Die, now have rows i and columns j.

Observed values, O_{ii} 's.

$$\chi^{2*} = \sum_{all\ cells} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

What are E_{ij} 's?

		Favorite Subject Area						
Gender	Math-Science (MS)	Social Science (SS)	Humanities (H)	Total				
Male (M) Female (F)	37 35	41 72	44 71	122 1 <i>7</i> 8				
Total	72	113	115	300				

Figure from Johnson & Kuby, 2012.

11.3 Inferences Concerning Contingency Tables

Test of Independence

$$\chi^2 * = \sum_{all \ cells} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

D of F for Contingency Tables:

$$df = (r-1)(c-1)$$

(11.4)

Expected Frequencies for Contingency Tables

$$E_{ij} = \frac{row\ total \times column\ total}{grand\ total} = \frac{R_i C_j}{n}$$

(11.5)

Where does this formula for E_{ii} 's come from?

rows i and columns j

11: Applications of Chi-Square 11.3 Inferences Concerning Contingency Tables *Test of Independence*

$$E_{ij} = \frac{R_i C_j}{n}$$

Where does this formula for E_{ij} 's come from?

	F	avorite Subject Area	ı	
Gender	MS	SS	н —	Total
Male Female	37 (29.28) 35 (42.72)	41 (45.95) 72 (67.05)	44 (46.77) 71 (68.23)	122 178
Total	72	113	115	300

If Favorite Subject is independent of Gender, then

$$\chi^{2*} = \sum_{\text{all cells}} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}} < \chi^{2}(2,0.05)$$

$$\alpha = 0.05$$

$$df = (r-1)(c-1) = (2-1)(3-1)$$

$$\chi^{2*} = 4.604 < \chi^{2}(2,0.05) = 5.99$$

Figure from Johnson & Kuby, 2012.

11: Applications of Chi-Square 11.3 Inferences Concerning Contingency Tables *Test of Independence*

 $\Xi_{ij} = \frac{R_i C_j}{n}$

Expected Frequencies for an $r \times c$	Contingency Table
--	-------------------

	Column						
Row	1	2		jth column		С	Total
1	$\frac{R_1 \times C_1}{n}$ $R_2 \times C_1$	$\frac{R_1 \times C_2}{n}$		$\frac{R_1 \times C_i}{n}$		$\frac{R_1 \times C_c}{n}$	R_1
2	$ \begin{array}{c c} R_2 \times C_1 \\ \hline n \\ \vdots \end{array} $			÷			R ₂ :
ith row	$\frac{R_i \times C_1}{n}$			$\frac{R_i \times C_i}{n}$			R_i
: r	$\frac{\vdots}{R_r \times C_1}$:			÷
Total	C_1	C_2		C_i			n

$$\chi^{2*} = \sum_{\text{all cells}} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}} < \chi^{2}((r-1)(c-1), \alpha)$$

Figure from Johnson & Kuby, 2012.

11: Applications of Chi-Square 11.3 Inferences Concerning Contingency Tables Test of Homogeneity

$$E_{ij} = \frac{R_i C_j}{n}$$

Is the distribution within all rows the same for all rows?

	Governo		
Residence	Favor	Oppose	Total
Urban Suburban Rural	143 98 13	57 102 87	200 200 100
Total	254	246	500

$$\chi^{2*} = \sum_{\text{all cells}} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}} < \chi^{2}((r-1)(c-1), \alpha) \qquad df = (r-1)(c-1) = (3-1)(2-1)$$

Recap Chapter 12

12.1 Introduction to the Analysis of Variance

Previously we learned about hypothesis testing for:

One Population: μ , p, and σ^2 .

Two Populations: $\mu_d = \mu_1 - \mu_2$, $\mu_1 - \mu_2$, $\mu_1 - \mu_2$, $\mu_1 - \mu_2$, and σ_1^2 / σ_2^2 .

(We also learned about hypothesis testing for contingency tables.)

Now we are going to study hypothesis testing for three or more populations.

Three Populations: at least two of $\mu_1, \mu_2, \mu_3, \dots$ different.

12.1 Introduction to the Analysis of Variance

If we are testing for differences in means, ...why are we analyzing variance?

As it turns out, we calculate two variances and take the ratio.

If all the means are truly the same, the two variances will be the same and the ratio will be 1.

12.1 Introduction to the Analysis of Variance

Hypothesis Testing Procedure

Step 1
$$H_0$$
: $\mu_1 = \mu_2 = \mu_3$ VS.

 H_a : at least two μ 's different

Step 2

Temperature Levels									
Sample from 68°F (i = 1)	Sample from 72°F (i = 2)	Sample from 76°F ($i = 3$)							
10 12 10 9	7 6 7 8 7	3 3 5 4							
$C_1 = 41$ $\bar{x}_1 = 10.25$	$C_2 = 35$ $\bar{x}_2 = 7.0$	$C_3 = 15$ $\bar{x}_3 = 3.75$							

Sum of Squares Due to Factor

$$SS(\text{factor}) = \left(\frac{C_1^2}{k_1} + \frac{C_2^2}{k_2} + \frac{C_3^2}{k_3} + \cdots\right) - \frac{(\sum x)^2}{n} \qquad \text{df(factor)} = c - 1$$

$$MS(\text{factor}) = \frac{SS(\text{factor})}{\text{df(factor)}}$$

$$df(factor) = c - 1$$

$$MS(factor) = \frac{SS(factor)}{df(factor)}$$

Sum of Squares Due to Error

$$SS(error) = \sum (x^2) - \left(\frac{C_1^2}{k_1} + \frac{C_2^2}{k_2} + \frac{C_3^2}{k_3} + \cdots\right)$$

$$df(error) = n - c$$

$$MS(error) = \frac{SS(error)}{df(error)}$$

$$F \star = \frac{MS(factor)}{MS(error)}$$

$$\alpha = .05$$

Shortcut for Total Sum of Squares

$$SS(total) = \sum (x^2) - \frac{(\sum x)^2}{n}$$

$$df(total) = n - 1$$

12.1 Introduction to the Analysis of Variance

Hypothesis Testing Procedure

Step .	3	
$F^*=$	42.25	= 44.47
<i>-</i>	0.95	— ++.+ /

$$SS(temperature) = \left(\frac{41^2}{4} + \frac{35^2}{5} + \frac{15^2}{4}\right) - \frac{(91)^2}{13} = 84.5$$
$$SS(error) = 731.0 - \left(\frac{41^2}{4} + \frac{35^2}{5} + \frac{15^2}{4}\right) = 9.5$$

Source	df	SS	MS		
Temperature Error	2 10	84.5 9.5	42.25 0.95		
Total	12	94.0	$F^* = 44.47$		

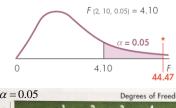
Step 4



0.01		-		THE PERSON NAMED IN	edom for	-	SECTION S. P. LEWIS CO., LANSING, S. P. LEWI			70.00
E00 (5)		2	3	4	5	6	7	8	9	10
1 2 3 4 5	4052. 98.5 34.1 21.2 16.3	5000. 99.0 30.8 18.0 13.3	5403. 99.2 29.5 16.7 12.1	5625. 99.2 28.7 16.0 11.4	5764. 99.3 28.2 15.5 11.0	5859. 99.3 27.9 15.2 10.7	5928. 99.4 27.7 15.0 10.5	5981. 99.4 27.5 14.8 10.3	6022. 99.4 27.3 14.7 10.2	6056 99.4 27.2 14.5 10.1
6 7 8 9	13.7 12.2 11.3 10.6 10.0	10.9 9.55 8.65 8.02 7.56	9.78 8.45 7.59 6.99 6.55	9.15 7.85 7.01 6.42 5.99	8,75 7,46 6,63 6,06 5,64	8.47 7.19 6.37 5.80 5.39	8.26 6.99 6.18 5.61 5.20	8.10 6.84 6.03 5.47 5.06	7.98 6.72 5.91 5.35 4.94	7.87 6.62 5.81 5.26 4.85
11 12	9.65 9.33	7.21 6.93	6.22 5.95	5.67 5.41	5.32 5.06	5.07 4.82	4.89 4.64	4.74	4.63	4.54

.00

Classical approach



= 0.05 Degrees of Freedom for Numerator										
	1	2	3	4	5	6	7	8	9	10
1 2 3 4 5	161. 18.5 10.1 7.71 6.61	200. 19.0 9.55 6.94 5.79	216. 19.2 9.28 6.59 5.41	225. 19.2 9.12 6.39 5.19	230. 19.3 9.01 6.26 5.05	234. 19.3 8.94 6.16 4.95	237. 19.4 8.89 6.09 4.88	239. 19.4 8.85 6.04 4.82	241. 19.4 8.81 6.00 4.77	242. 19.4 8.79 5.96 4.74
6 7 8 9 10	5.99 5.59 5.32 5.12 4.96	5.14 4.74 4.46 4.26 4.10	4.76 4.35 4.07 3.86 3.71	4.53 4.12 3.84 3.63 3.48	4.39 3.97 3.69 3.48 3.33	4.28 3.87 3.58 3.37 3.22	4.21 3.79 3.50 3.29 3.14	4.15 3.73 3.44 3.23 3.07	4.10 3.68 3.39 3.18 3.02	4.06 3.64 3.35 3.14 2.98
10 11 12	4.84 4.75	3.98 3.89	3.59 3.49	3.36 3.26	3.20 3.11	3.09 3.00	3.01 2.91	2.95 2.85	2.90 2.80	2.85 2.75

F(2,10,0.05)=4.10

Step 5

Decision: Reject H_0

$$p$$
 – $value$ < α

$$0.00 $\alpha = 0.05$$$

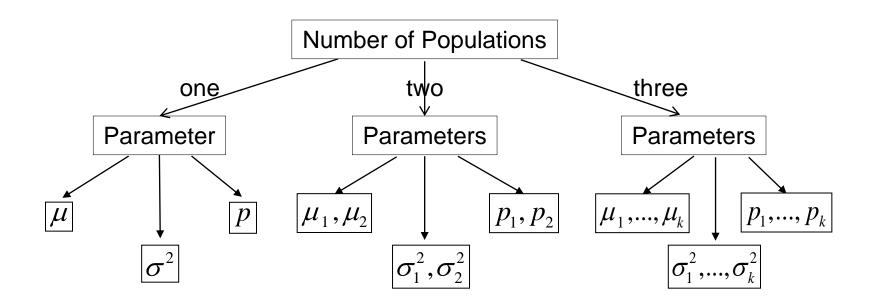
$$F*>F_{crit}$$

$$F* = 44.47$$

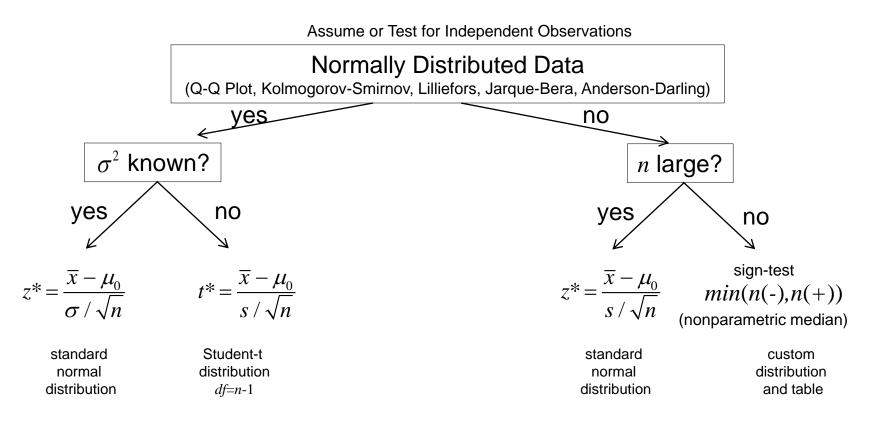
$$F_{crit} = 4.10$$

Statistical Inference

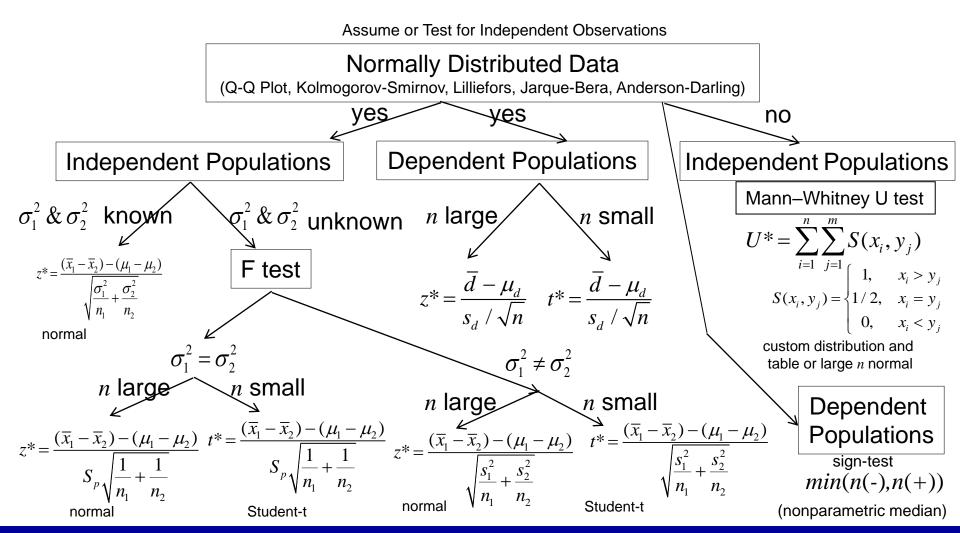
Statistical Inference:



Statistical Inference: Procedures for μ



Statistical Inference: Procedures for μ_1 - μ_2



Statistical Inference: Procedures for $\mu_1,...,\mu_k$

Normally Distributed Data

(Q-Q Plot, Kolmogorov-Smirnov, Lilliefors, Jarque-Bera, Anderson-Darling)

yes _____no

Equal variances (Levene or Bartlet Test)

yes no

ANOVA Test

$$F^* = \frac{s_1^2}{s_2^2}$$

F-distribution $df_1 = n_1 - 1$

 $df_1 = n_1 - 1$ $df_2 = n_2 - 1$ Welch's Test

$$F^* = \frac{s_1^2}{s_2^2}$$

F-distribution $df_1 = n_1 - 1$ $df_2 = 1/\Lambda$ $\Lambda = \frac{3\sum_{j=1}^{k} \left(1 - \frac{w_j}{\sum_{j=1}^{k} w_j}\right)^2}{n_j - 1}$

Kruskal-Wallis Test

$$H^* = (n-1) \frac{\sum_{i=1}^{k} (\overline{r_{i.}} - \overline{r})^2}{\sum_{i=1}^{k} \sum_{j=1}^{n_i} (r_{ij} - \overline{r})^2}$$

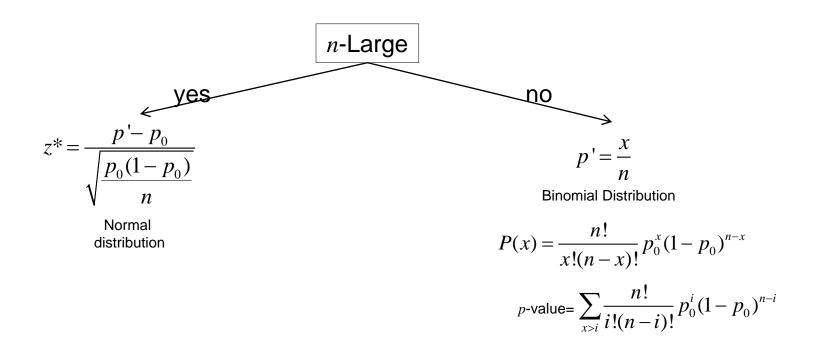
 r_{ii} =rank of obs j in pop i

$$\overline{r_{i.}} = \frac{1}{n_i} \sum_{j=1}^{n_i} r_{ij}$$

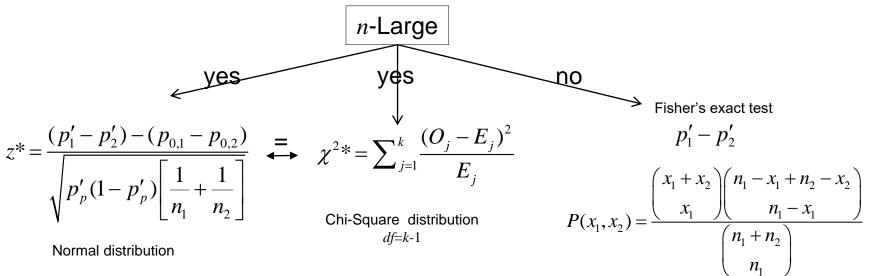
$$\overline{r} = \frac{1}{2}(n+1)$$

Special distribution and table.

Statistical Inference: Procedures for *p*



Statistical Inference: Procedures for p_1 - p_2

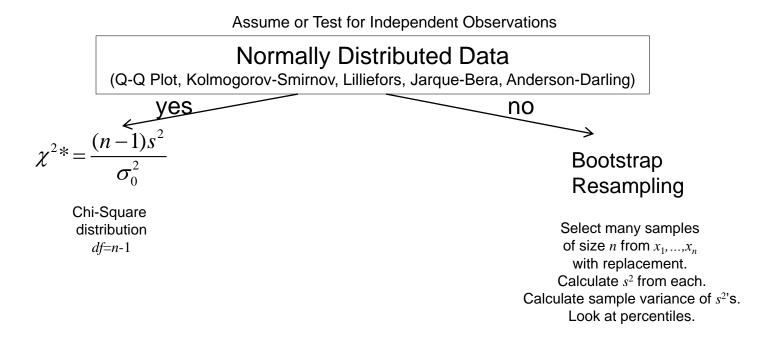


 $p_1' = \frac{x_1}{n_1} \qquad p_2' = \frac{x_2}{n_2}$

Sum probabilities of more extreme values to get *p*-value

 $p_p' = \frac{x_1 + x_2}{n_1 + n_2}$

Statistical Inference: Procedures for σ^2



Statistical Inference: Procedures for σ_1^2 , σ_2^2

Assume or Test for Independent Observations

Normally Distributed Data
(Q-Q Plot, Kolmogorov-Smirnov, Lilliefors, Jarque-Bera, Anderson-Darling) $F^* = \frac{s_1^2}{s_2^2}$ F-distribution $df_1 = n_1 - 1 \\ df_2 = n_2 - 1$ $W^* = \frac{(n-k)\sum_{i=1}^k n_i (\overline{A}_i - \overline{A}_i)^2}{(k-1)\sum_{i=1}^k \sum_{j=1}^{n_i} (A_{ij} - \overline{A}_i)^2}$ F-distribution $df_1 = n_1 - 1 \\ df_2 = n_2 - 1$ F-distribution $df_1 = n_1 - 1 \\ df_2 = n_2 - 1$ Pop i Obs j"." = sum over

Bartlet test

$$T^* = \frac{(n-k)\ln s_p^2 - \sum_{i=1}^k (n_i - 1)\ln s_i^2}{1 + (1/(3(k-1)))((\sum_{i=1}^k 1/(n_i - 1)) - 1/(n-k))}$$
 Chi-Square distribution
$$\frac{df = k-1}{df = k-1}$$

Statistical Inference: Procedures for $\sigma_1^2,...,\sigma_k^2$

Assume or Test for Independent Observations Normally Distributed Data (Q-Q Plot, Kolmogorov-Smirnov, Lilliefors, Jarque-Bera, Anderson-Darling) no Levene test $W^* = \frac{(n-k)\sum_{i=1}^{k} n_i (\overline{A}_{i.} - \overline{A}_{..})^2}{(k-1)\sum_{i=1}^{k} \sum_{i=1}^{n_i} (A_{ii} - \overline{A}_{i.})^2}$ F-distribution $df_1=n_1-1$ $df_2=n_2-1$ *F*-distribution $A_{ij} = |y_{ij} - \overline{y}_{i.}|$ $df_1=n_1-1$ Pop i Obs i $df_2=n_2-1$ ". "=sum over Bartlet test

$$T^* = \frac{(n-k)\ln s_p^2 - \sum_{i=1}^k (n_i - 1)\ln s_i^2}{1 + (1/(3(k-1)))((\sum_{i=1}^k 1/(n_i - 1)) - 1/(n-k))}$$

Chi-Square distribution *df=k-1*

Final Exam

Tuesday 12/9/25 5:45pm - 7:45pm Cudahy Hall 001