Class 25

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

Agenda:

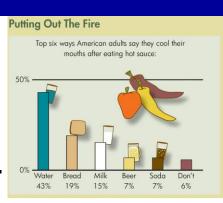
Recap Chapter 11.1-11.3

Lecture Chapter 12.1

Recap Chapter 11.1-11.3

11: Applications of Chi-Square11.1 Chi-Square Statistic Cooling a Great Hot Taste

Quite often we have qualitative data in categories.



Example: Cooling mouth after hot spicy food.

Method	Water	Bread	Milk	Beer	Soda	Nothing	Other
Number	73	29	35	19	20	13	11

11.1 Chi-Square Statistic Data Setup

Example: Cooling mouth after hot spicy food.

Method	Water	Bread	Milk	Beer	Soda	Nothing	Other
Number	73	29	35	19	20	13	11

Data set up: k cells C_1, \ldots, C_k that n observations sorted into

Observed frequencies in each cell O_1, \ldots, O_k .

$$O_1$$
+...+ O_k = n

Expected frequencies in each cell $E_1, ..., E_k$.

$$E_1$$
+...+ E_k = n

Cell	C_{1}	C_2			C_k
Observed	O_1	O_2			O_k
Expected	E_{1}	E_{2}	-		E_k

11.1 Chi-Square Statistic Data Setup

Example: Cooling mouth after hot spicy food.

Method	Water	Bread	Milk	Beer	Soda	Nothing	Other
Number	73	29	35	19	20	13	11

Data set up: k cells C_1, \ldots, C_k that n observations sorted into

Observed frequencies in each cell O_1, \ldots, O_k .

$$O_1$$
+...+ O_k = n

Expected frequencies in each cell $E_1, ..., E_k$.

$$E_1$$
+...+ E_k = n

Cell	C_1	C_2		•	•	C_k
Observed	O_1	O_2			•	O_k
Expected	E_{1}	E_{2}	-			E_k

11.2 Inferences Concerning Multinomial Experiments

Example: We work for Las Vegas Gaming Commission. We have received many complaints that dice at particular casino are loaded (weighted, not fair). We confiscate all dice and test one. We roll it n=60 times. We get following data.

Cell, i	1	2	3	4	5	6
Observed, O_i	7	12	10	12	8	11
Expected, E_i	10	10	10	10	10	10

Expected Value for Multinomial Experiment:

$$E_i = np_i$$

(11.3)

11.2 Inferences Concerning Multinomial Experiments

Example: We work for Las Vegas Gaming Commission. We have received many complaints that dice at particular casino are loaded (weighted, not fair). We confiscate all dice and test one. We roll it n=60 times. We get following data.

Cell, i	1	2	3	4	5	6
Observed, O_i	7	12	10	12	8	11
Expected, E_i	10	10	10	10	10	10

Expected Value for Multinomial Experiment:

$$E_i = np_i$$

(11.3)

11: Applications of Chi-Square 11.3 Inferences Concerning Contingency Tables *Test of Independence*

Is "Preference for math-science, social science, or humanities" ... "independent of the gender of a college student?"

Sample Results for Gender and Subject Preference

	Favorite Subject Area							
Gender	Math-Science (MS)	Social Science (SS)	Humanities (H)	Total				
Male (M) Female (F)	3 <i>7</i> 3 <i>5</i>	41 72	44 71	122 178				
Total	72	113	115	300				

Figure from Johnson & Kuby, 2012.

11: Applications of Chi-Square 11.3 Inferences Concerning Contingency Tables *Test of Independence*

Is "Preference for math-science, social science, or humanities" ... "independent of the gender of a college student?"

There is a Hypothesis test (of independence) to determine this.

Is Favorite Subject independent of Gender.

Similar to Example with the Die, now have rows i and columns j.

Observed values, O_{ii} 's.

$$\chi^{2*} = \sum_{all\ cells} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

What are E_{ij} 's?

	Favorite Subject Area							
Gender	Math-Science (MS)	Social Science (SS)	Humanities (H)	Total				
Male (M) Female (F)	3 <i>7</i> 3 <i>5</i>	41 72	44 71	122 1 <i>7</i> 8				
Total	72	113	115	300				

Figure from Johnson & Kuby, 2012.

11.3 Inferences Concerning Contingency Tables

Test of Independence

$$\chi^2 * = \sum_{all \ cells} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

D of F for Contingency Tables:

$$df = (r-1)(c-1)$$

(11.4)

Expected Frequencies for Contingency Tables

$$E_{ij} = \frac{row\ total \times column\ total}{grand\ total} = \frac{R_i C_j}{n}$$

(11.5)

Where does this formula for E_{ij} 's come from?

rows i and columns j

11: Applications of Chi-Square 11.3 Inferences Concerning Contingency Tables *Test of Independence*

$$E_{ij} = \frac{R_i C_j}{n}$$

Where does this formula for E_{ij} 's come from?

	F	avorite Subject Area	1	
Gender	MS	SS	н	Total
Male Female	37 (29.28) 35 (42.72)	41 (45.95) 72 (67.05)	44 (46.77) 71 (68.23)	122 178
Total	72	113	115	300

If Favorite Subject is independent of Gender, then

$$\chi^{2*} = \sum_{\text{all cells}} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}} < \chi^{2}(2,0.05)$$

$$\alpha = 0.05$$

$$df = (r-1)(c-1) = (2-1)(3-1)$$

$$\chi^{2*} = 4.604 < \chi^{2}(2,0.05) = 5.99$$

Figure from Johnson & Kuby, 2012.

11: Applications of Chi-Square 11.3 Inferences Concerning Contingency Tables *Test of Independence*

 $\Xi_{ij} = \frac{R_i C_j}{n}$

			Col	umn		
Row	1	2		jth column	 с	Total
1	$\frac{R_1 \times C_1}{n}$ $R_2 \times C_1$	$\frac{R_1 \times C_2}{n}$		$\frac{R_1 \times C_i}{n}$	 $\frac{R_1 \times C_c}{n}$	R_1
2	$ \begin{array}{c c} R_2 \times C_1 \\ \hline n \\ \vdots \end{array} $			÷		R ₂ :
ith row	$\frac{R_i \times C_1}{n}$			$\frac{R_i \times C_i}{n}$		R_i
: r	$\frac{\vdots}{R_r \times C_1}$:		÷
Total	C_1	C_2		C_i	 	n

$$\chi^{2*} = \sum_{all \ cells} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}} < \chi^{2}((r-1)(c-1), \alpha)$$

Figure from Johnson & Kuby, 2012.

11: Applications of Chi-Square 11.3 Inferences Concerning Contingency Tables Test of Homogeneity

$$E_{ij} = \frac{R_i C_j}{n}$$

Is the distribution within all rows the same for all rows?

	Governor's Proposal		
Residence	Favor	Oppose	Total
Urban Suburban Rural	143 98 13	57 102 87	200 200 100
Total	254	246	500

$$\chi^{2*} = \sum_{\text{all cells}} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}} < \chi^{2}((r-1)(c-1), \alpha) \qquad \alpha = 0.05$$

$$df = (r-1)(c-1) = (3-1)(2-1)$$

Chapter 11: Applications of Chi-Square

Questions?

Homework: Read Chapter 11
WebAssign
Chapter 11 # 3, 5, 11, 15, 21, 49, 53

Chapter 12: Analysis of Variance

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical

Lecture Chapter 12.1

12.1 Introduction to the Analysis of Variance

Previously we learned about hypothesis testing for:

One Population: μ , p, and σ^2 .

Two Populations: $\mu_d = \mu_1 - \mu_2$, $\mu_1 - \mu_2$, $\mu_1 - \mu_2$, $\mu_1 - \mu_2$, and σ_1^2 / σ_2^2 .

(We also learned about hypothesis testing for contingency tables.)

Now we are going to study hypothesis testing for three or more populations.

Three Populations: at least two of $\mu_1, \mu_2, \mu_3, \dots$ different.

12.1 Introduction to the Analysis of Variance

If we are testing for differences in means, ...why are we analyzing variance?

As it turns out, we calculate two variances and take the ratio.

If all the means are truly the same, the two variances will be the same and the ratio will be 1.

12.1 Introduction to the Analysis of Variance

Example: Hypothesis Test for Three Means, μ_1 , μ_2 , and μ_3 . It is believed that manufacturing plant temperature affects production rate.

	Temperature Levels			
	Sample from $68^{\circ}F$ ($i = 1$)	Sample from 72°F (i = 2)	Sample from 76°F ($i = 3$)	
	10 12 10 9	7 6 7 8 7	3 3 5 4	
Column totals	$C_1 = 41$ $\bar{x}_1 = 10.25$	$C_2 = 35$ $\bar{x}_2 = 7.0$	$C_3 = 15$ $\bar{x}_3 = 3.75$	
	$k_1 = 4$	$k_2 = 5$	$k_3 = 4$	
	μ_1	μ_2	μ_3	

12.1 Intro to ANOVA

We could test all pairs:

$$H_0: \mu_1 = \mu_2 \text{ vs. } H_a: \mu_1 \neq \mu_2$$

 $H_0: \mu_1 = \mu_3 \text{ vs. } H_a: \mu_1 \neq \mu_3$

$$H_0: \mu_2 = \mu_3 \text{ vs. } H_a: \mu_2 \neq \mu_3$$

Temperature Levels				
Sample from 68°F (i = 1)	Sample from 72°F (i = 2)	Sample from 76°F ($i = 3$)		
10 12 10 9	7 6 7 8 7	3 3 5 4		
$C_1 = 41$ $\bar{x}_1 = 10.25$	$C_2 = 35$ $\bar{x}_2 = 7.0$	$C_3 = 15$ $\bar{x}_3 = 3.75$		

But each test increases our Type I error rate, $\alpha = \sum \alpha_i$.

So we would like to perform one single hypothesis test

 $H_0: \mu_1 = \mu_2 = \mu_3$ vs. $H_a:$ at least two μ 's are different

12.1 Intro to ANOVA

Example: μ_1 , μ_2 , and μ_3 Let's go through the hypothesis test procedure

Temperature Levels				
Sample from 68°F (i = 1)	Sample from 72°F (i = 2)	Sample from 76°F ($i = 3$)		
10 12 10 9	7 6 7 8 7	3 3 5 4		
$C_1 = 41$ $\bar{x}_1 = 10.25$	$C_2 = 35$ $\bar{x}_2 = 7.0$	$C_3 = 15$ $\bar{x}_3 = 3.75$		

Step 1: a) Parameter of Interest

Mean production at 3 temperatures

b) Statement of Hypotheses

$$H_0: \mu_1 = \mu_2 = \mu_3$$

VS.

 H_a : at least two μ 's are different (it could be $\mu_1 \neq \mu_2$, or $\mu_1 \neq \mu_3$, or $\mu_2 \neq \mu_3$, or $\mu_1 \neq \mu_2 \neq \mu_3$)

12.1 Intro to ANOVA

Example: μ_1 , μ_2 , and μ_3 Let's go through the hypothesis test procedure

Temperature Levels				
Sample from 68°F (i = 1)	Sample from 72°F (i = 2)	Sample from $76^{\circ}F$ ($i=3$)		
10	7	3		
12	6	3		
9	8	4		
	7			
$C_1 = 41$ $\bar{x}_1 = 10.25$	$C_2 = 35$ $\bar{x}_2 = 7.0$	$C_3 = 15$ $\bar{x}_3 = 3.75$		
$\bar{x}_1 = 10.25$	$\bar{x}_2 = 7.0$	$\bar{x}_3 = 3.75$		

Step 2: a) Assumptions

Normal independent populations, independent observations from each population, equal variances.

b) Test Statistic

Reject or do not reject, *F*-distribution and *F*-statistic.

c) Level of Significance

$$\alpha = 0.05$$

12.1 Intro to ANOVA

Example: μ_1 , μ_2 , and μ_3 Let's go through the hypothesis test procedure

Temperature Levels				
Sample from $68^{\circ}F$ ($i = 1$)	Sample from 72°F (i = 2)	Sample from 76°F ($i = 3$)		
10 12 10 9	7 6 7 8 7	3 3 5 4		
$C_1 = 41$ $\bar{x}_1 = 10.25$	$C_2 = 35$ $\bar{x}_2 = 7.0$	$C_3 = 15$ $\bar{x}_3 = 3.75$		

Step 3: a) Sample Information

- b) Calculate Test Statistic

 Next page
- c) Level of Significance α =0.05

Temperature Levels

12.1 Intro to ANOVA

Sample from 68°F (
$$i = 1$$
) Sample from 72°F ($i = 2$) Sample from 76°F ($i = 3$)
$$\begin{array}{ccccc} C_1 = 41 & & C_2 = 35 & & C_3 = 15 \\ \overline{x}_1 = 10.25 & & \overline{x}_2 = 7.0 & & \overline{x}_3 = 3.75 \end{array}$$

$$\begin{array}{ccccc} k_1 = 4 & & k_2 = 5 & & k_3 = 4 \end{array}$$

Step 3: b) Calculate Test Statistic: F^*

 $SS(x) = \Sigma x^2 - \frac{(\Sigma x)^2}{(2.8)}$

Need to calculate 3 Sums of Squares

Shortcut for Total Sum of Squares

$$SS(total) = \sum (x^2) - \frac{(\sum x)^2}{n}$$
 (12.2)

$$\sum x_i = 10 + 12 + 10 + 9 + 7 + 6 + 7 + 8 + 7 + 3 + 3 + 5 + 4 = 91$$

$$\sum x_i^2 = 10^2 + 12^2 + 10^2 + 9^2 + 7^2 + 6^2 + 7^2 + 8^2 + 7^2 + 3^2$$

$$= 731$$

$$+3^2 + 5^2 + 4^2$$

$$SS(total) = \sum x_i^2 - \frac{\left(\sum x_i\right)^2}{n} = 731 - \frac{\left(91\right)^2}{13} = 94$$

Temperature Levels

12.1 Intro to ANOVA

Step 3: b) Calculate Test Statistic: F^*

Need to calculate 3 Sums of Squares
The Total Sum of Squares can be partitioned

$$SS(total) = SS(error) + SS(factor)$$
 temperature

$$SS(factor) = \left(\frac{C_1^2}{k_1} + \frac{C_2^2}{k_2} + \frac{C_3^2}{k_3} + \cdots\right) - \frac{(\sum x)^2}{n}$$
 (12.3)

 C_i =column total k_i =number of replicates

Temperature Levels

12.1 Intro to ANOVA

Step 3: b) Calculate Test Statistic: F^*

Need to calculate 3 Sums of Squares
The Total Sum of Squares can be partitioned

$$SS(total) = SS(error) + SS(factor)$$
 temperature

Sum of Squares Due to Factor

$$SS(factor) = \left(\frac{C_1^2}{k_1} + \frac{C_2^2}{k_2} + \frac{C_3^2}{k_3} + \cdots\right) - \frac{(\sum x)^2}{n}$$
 (12.3)

$$SS(temperature) = \left(\frac{41^2}{4} + \frac{35^2}{5} + \frac{15^2}{4}\right) - \frac{(91)^2}{13} = 84.5$$

Temperature Levels

12.1 Intro to ANOVA

Sample from 68°F (
$$i = 1$$
) Sample from 72°F ($i = 2$) Sample from 76°F ($i = 3$)
$$C_1 = 41 \qquad C_2 = 35 \qquad C_3 = 15$$

$$\bar{x}_1 = 10.25 \qquad \bar{x}_2 = 7.0 \qquad \bar{x}_3 = 3.75$$

$$k_1 = 4 \qquad k_2 = 5 \qquad k_3 = 4$$

Step 3: b) Calculate Test Statistic: F^*

Need to calculate 3 Sums of Squares
The Total Sum of Squares can be partitioned

$$SS(total) = SS(error) + SS(factor)$$
 temperature

Sum of Squares Due to Error

$$SS(error) = \sum (x^2) - \left(\frac{C_1^2}{k_1} + \frac{C_2^2}{k_2} + \frac{C_3^2}{k_3} + \cdots\right)$$
 (12.4)

$$SS(error) = 731.0 - \left(\frac{41^2}{4} + \frac{35^2}{5} + \frac{15^2}{4}\right) = 9.5$$

12: Analysis of Variance
Sample from 68°F (i = 1) Sample from 72°F (i = 2)

12.1 Intro to ANOVA

C = 41

Sample from 68°F (i = 1) Sample from 72°F (i = 2) Sample from 76°F (i = 3) $C_1 = 41 \qquad C_2 = 35 \qquad C_3 = 15 \\ \bar{x}_1 = 10.25 \qquad \bar{x}_2 = 7.0 \qquad \bar{x}_3 = 3.75$ $k_1 = 4 \qquad k_2 = 5 \qquad k_3 = 4$

Step 3: b) Calculate Test Statistic: F^*

Need to calculate 3 Sums of Squares We will write these Sums of Squares in a table

	Source	df	SS	MS
(temperature)	Factor Error		84.5 9.5	
	Total		94.0	

12: Analysis of Variance
12.1 Intro to ANOVA

Temperature Levels

Sample from $68^{\circ}F$ ($i = 1$)	Sample from $72^{\circ}F$ ($i = 2$)	Sample from $76^{\circ}F$ ($i=3$)
$C_1 = 41$	$C_2 = 35$	$C_3 = 15$
$\bar{x}_1 = 10.25$	$\bar{x}_2 = 7.0$	$\bar{x}_3 = 3.75$
$k_1 = 4$	$k_2 = 5$	$k_3 = 4$

Step 3: b) Calculate Test Statistic: F^*

Need to calculate 3 Sums of Squares Need the degrees of freedom for the sum of squares

Degrees of Freedom for Factor
$$df(\text{factor}) = c - 1 \qquad (12.5)$$

$$df \ (temperature) = 3 - 1 = 2$$
 Degrees of Freedom for Total
$$df(\text{total}) = n - 1 \qquad (12.6)$$

$$df \ (total) = 13 - 1 = 12$$
 Degrees of Freedom for Error
$$df(\text{error}) = n - c \qquad (12.7)$$

$$df \ (error) = 13 - 3 = 10$$

Temperature Levels

12.1 Intro to ANO	VA
-------------------	----

Sample from 68°F (
$$i = 1$$
) Sample from 72°F ($i = 2$) Sample from 76°F ($i = 3$)
$$C_1 = 41 \qquad C_2 = 35 \qquad C_3 = 15 \\ \bar{x}_1 = 10.25 \qquad \bar{x}_2 = 7.0 \qquad \bar{x}_3 = 3.75$$

$$k_1 = 4 \qquad k_2 = 5 \qquad k_3 = 4$$

Step 3: b) Calculate Test Statistic: F^*

Need to calculate 3 Sums of Squares
The degrees of freedom and SS must add up

$$SS(factor) + SS(error) = SS(total)$$
 (12.8)
and $df(factor) + df(error) = df(total)$ (12.9)

$$SS:84.5+9.5=94.0$$

$$df:10-2=12$$

$$SS(temperature) = 84.5$$

 $SS(error) = 9.5$
 $SS(total) = 94.0$
 $df(temperature) = 2$
 $df(error) = 10$
 $df(total) = 12$

Temperature Levels

12.1 Intro to ANOVA

Step 3: b) Calculate Test Statistic: F^*

Need to calculate 3 Sums of Squares Need to divide SS's by df's to get mean squares

Mean Square for Factor
$$MS(\text{factor}) = \frac{SS(\text{factor})}{\text{df}(\text{factor})} \tag{12.10}$$

$$SS(temperature) = 84.5$$

$$df(temperature) = 2$$
 Mean Square for Error

Mean Square for Error

$$MS(error) = \frac{SS(error)}{df(error)}$$
 $SS(error) = 9.5$
 $df(error) = 10$
 $SS(total) = 94.0$
 $df(total) = 12$

Temperature Levels

12.1 Intro to ANOVA

Sample from 68°F (
$$i = 1$$
) Sample from 72°F ($i = 2$) Sample from 76°F ($i = 3$)
$$C_1 = 41 \qquad C_2 = 35 \qquad C_3 = 15 \\ \bar{x}_1 = 10.25 \qquad \bar{x}_2 = 7.0 \qquad \bar{x}_3 = 3.75$$

$$k_1 = 4 \qquad k_2 = 5 \qquad k_3 = 4$$

Step 3: b) Calculate Test Statistic: F^*

Need to calculate 3 Sums of Squares We then complete the ANOVA table

Source	df	SS	MS
Temperature Error	2 10	84.5 9.5	42.25 0.95
Total	12	94.0	

$$MS(factor) = \frac{SS(factor)}{df(factor)}$$

$$MS(error) = \frac{SS(error)}{df(error)}$$

$$df(factor) = c - 1$$

$$df(error) = n - c$$

$$df(total) = n - 1$$

Temperature Levels

12.1 Intro to ANOVA

Sample from 68°F (
$$i = 1$$
) Sample from 72°F ($i = 2$) Sample from 76°F ($i = 3$)
$$C_1 = 41 \qquad C_2 = 35 \qquad C_3 = 15 \\ \bar{x}_1 = 10.25 \qquad \bar{x}_2 = 7.0 \qquad \bar{x}_3 = 3.75$$

$$k_1 = 4 \qquad k_2 = 5 \qquad k_3 = 4$$

Step 3: b) Calculate Test Statistic: F^*

Need to calculate 3 Sums of Squares We now can calculate the *F* statistic

Test Statistic for ANOVA
$$F \bigstar = \frac{MS(factor)}{MS(error)}$$
(12.12)

$$F^* = \frac{MS(temperature)}{MS(error)} = \frac{42.25}{0.95} = 44.47$$

So is 44.47 "large?"

$$MS(factor) = \frac{SS(factor)}{df(factor)}$$

$$MS(error) = \frac{SS(error)}{df(error)}$$

$$\mathsf{df}(\mathsf{factor}) = c - 1$$

$$df(error) = n - c$$

$$df(total) = n - 1$$

12: Analysis of Variance 12.1 Intro to ANOVA

$$F \star = \frac{MS(factor)}{MS(error)}$$
 (12.12)

Step 4: Probability Distribution We need to determine if the F^* statistic is "large" or equivalently if the area to its right is "small."

Source	df	SS	MS
Temperature Error	2 10	84.5 9.5	42.25 0.95
Total	12	94.0	$F^* = 44.47$

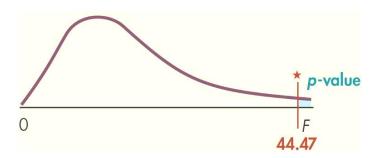
12: Analysis of Variance 12.1 Intro to ANOVA

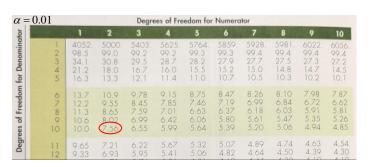
Source	df	SS	MS
Temperature Error	2 10	84.5 9.5	42.25 0.95
Total	12	94.0	$F^* = 44.47$

Step 4: Probability Distribution: *p*-value approach

 $\alpha = 0.05$

p-value= $P(F*>44.7|df_n=2,df_d=10)$





From Table 9C we see that

$$P(F*>7.56|df_n=2,df_d=10)=0.01$$

so $P(F*>44.7|df_n=2,df_d=10)<0.01$

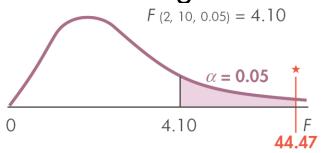
 $\alpha = 0.05$

12: Analysis of Variance 12.1 Intro to ANOVA

Source	df	SS	MS
Temperature Error	2 10	84.5 9.5	42.25 0.95
Total	12	94.0	$F^* = 44.47$

Step 4:

Probability Distribution: Classical approach We need to find the F value that has an area of α =0.05 larger than it when df_n =2, df_d =10.





From Table 9A we see that the *F* critical value is 4.10.

12: Analysis of Variance 12.1 Intro to ANOVA

Source	df	SS	MS
Temperature Error	2 10	84.5 9.5	42.25 0.95
Total	12	94.0	$F^* = 44.47$

Step 5: a) Decision: Reject H_0

 $\alpha = 0.05$

p-value approach:

From Table 9C $P(F*>44.7|df_n=2,df_d=10)<0.01$

But $P(F*>44.7|df_n=2,df_d=10)>0$.

Classical approach:

From Table 9A we see that F(2,10,0.05)=4.10.

b) At least two of the means are statistically different. At least one of the room temperatures does have a significant effect on the production rate.

12.1 Introduction to the Analysis of Variance

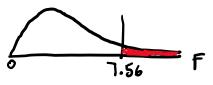
What if we had a different F^* ?

Step 3

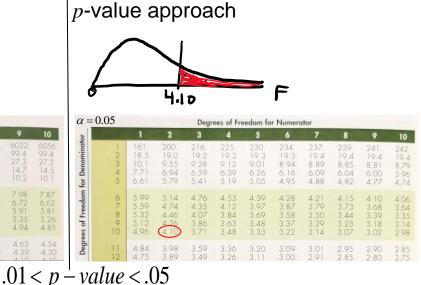
$$F^* = \frac{4.225}{0.95} = 4.447$$

Step 4

p-value approach



=	0.01	Degrees of Freedom for Numerator									
5		1	2	3	4	5	6	7	8	9	10
	1 2 3 4 5	4052. 98.5 34.1 21.2 16.3	5000. 99.0 30.8 18.0 13.3	5403. 99.2 29.5 16.7 12.1	5625. 99.2 28.7 16.0 11.4	5764. 99.3 28.2 15.5 11.0	5859. 99.3 27.9 15.2 10.7	5928. 99.4 27.7 15.0 10.5	5981. 99.4 27.5 14.8 10.3	6022. 99.4 27.3 14.7 10.2	6056. 99.4 27.2 14.5 10.1
Degrees of Freedom	6 7 8 9	13.7 12.2 11.3 10.6 10.0	10.9 9.55 8.65 8.02 7.56	9.78 8.45 7.59 6.99 6.55	9.15 7.85 7.01 6.42 5.99	8.75 7.46 6.63 6.06 5.64	8.47 7.19 6.37 5.80 5.39	8.26 6.99 6.18 5.61 5.20	8.10 6.84 6.03 5.47 5.06	7.98 6.72 5.91 5.35 4.94	7.87 6.62 5.81 5.26 4.85
R	11	9.65 9.33	7.21 6.93	6.22 5.95	5.67 5.41	5.32 5.06	5.07 4.82	4.89 4.64	4.74	4.63	4.54



Step 5

Decision: Reject H_0

$$p$$
 – $value < \alpha$

$$0.01 $\alpha = 0.05$$$

$$F^* > F_{crit}$$

$$F* = 4.447$$

Chapter 12: Analysis of Variance

Questions?

Homework: Read Chapter 12
WebAssign
Chapter 12 # 2, 9, 17, 18, 19, 32