Class 24

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

Agenda:

Recap Chapter 10.4-10.5

Lecture Chapter 11.1-11.3

Recap Chapter 10.4-10.5

10: Inferences Involving Two Populations 10.4 Inference for Difference between Two Proportions

Interested in comparisons between proportions $p_1 - p_2$.

If independent samples of size n_1 and n_2 are drawn ... with $p_1=P_1$ (success) and $p_2=P_2$ (success), then the sampling distribution of $p_1'-p_2'$ has these properties:

1. mean
$$\mu_{p_1'-p_2'} = p_1 - p_2$$

2. standard error $\sigma_{p_1'-p_2'} = \sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}}$ (10.10)

3. approximately normal dist if n_1 and n_2 are sufficiently large. ie I $n_1, n_2 > 20$ II $n_1p_1, n_1q_1, n_2p_2, n_2q_2 > 5$ III sample < 10% of pop

10: Inferences Involving Two Populations 10.4 Inference for Difference between Two Proportions Confidence Interval Procedure

Assumptions for ... difference between two proportions p_1 - p_2 : The n_1 ... and n_2 random observations ... are selected independently from two populations that are not changing

Confidence Interval for the Difference between Two Proportions $p_1 - p_2$

$$(p'_1 - p'_2) - z(\alpha/2) \sqrt{\frac{p'_1 q'_1}{n_1} + \frac{p'_2 q'_2}{n_2}} \quad \text{to} \quad (p'_1 - p'_2) + z(\alpha/2) \sqrt{\frac{p'_1 q'_1}{n_1} + \frac{p'_2 q'_2}{n_2}}$$
where $p'_1 = \frac{x_1}{n_1}$ and $p'_2 = \frac{x_2}{n_2}$. (10.11)

10: Inferences Involving Two Populations 10.4 Inference for Difference between Two Proportions Confidence Interval Procedure

Example: $\alpha = 0.01$

Construct a 99% CI for proportion of female A's minus male A's difference $p_f - p_m$.

120 values
$$z(\alpha/2) = 2.58$$
 $(p'_f - p'_m) \pm z(\alpha/2) \sqrt{\frac{p'_f q'_f}{n_f} + \frac{p'_m q'_m}{n_m}}$ $n_m = 52$ $n_f = 68$ $p'_f = \frac{x_f}{n_f} = \frac{43}{68} = .62$ $(.62 - .40) \pm 2.58 \sqrt{\frac{(.62)(.38)}{68} + \frac{(.40)(.60)}{52}}$ $x_m = 21$ $x_f = 43$ $p'_m = \frac{x_m}{n_m} = \frac{21}{52} = .40$ $-.003$ to .460

10: Inferences Involving Two Populations 10.4 Inference for Difference between Two Proportions **Hypothesis Testing Procedure**

We can perform hypothesis tests on the proportion

$$H_0: p_1 \ge p_2 \text{ vs. } H_a: p_1 < p_2$$

$$H_0: p_1 \le p_2 \text{ vs. } H_a: p_1 > p_2$$

$$H_0$$
: $p_1 = p_2$ vs. H_a : $p_1 \neq p_2$

$$\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2} = pq \left[\frac{1}{n_1} + \frac{1}{n_2} \right]$$

when
$$p_1 = p_2 = p$$
.

Test Statistic for the Difference between two Proportions-

$$z^* = \frac{(p_1' - p_2') - (p_{0,1} - p_{0,2})}{\sqrt{pq \left[\frac{1}{n_1} + \frac{1}{n_2}\right]}} \qquad \text{Population Proportions Known}$$

$$p_1' = \frac{x_1}{n_1} \quad p_2' = \frac{x_2}{n_2} \qquad (10.12)$$

$$\sqrt{pq\left[\frac{1}{n_1} + \frac{1}{n_2}\right]}$$

$$p_1' = \frac{x_1}{n_1}$$
 $p_2' = \frac{x_2}{n_2}$

(10.12)

10: Inferences Involving Two Populations 10.4 Inference for Difference between Two Proportions Hypothesis Testing Procedure

Test Statistic for the Difference between two Proportions-Population Proportions **UnKnown**

$$z^* = \frac{(p_1' - p_2') - (p_{0,1} - p_{0,2})}{\sqrt{p_p' q_p' \left[\frac{1}{n_1} + \frac{1}{n_2}\right]}}$$

$$(10.15)$$

$$p_p \text{ estimated}$$

where we assume $p_1=p_2$ and use pooled estimate of proportion

$$p_1' = \frac{x_1}{n_1} \quad p_2' = \frac{x_2}{n_2} \qquad \frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2} = pq \left[\frac{1}{n_1} + \frac{1}{n_2} \right] \qquad p_p' = \frac{x_1 + x_2}{n_1 + n_2}$$

10: Inferences Involving Two Populations 10.4 Inference for Difference between Two Proportions

Is proportion of Salesman's defectives less than Competitor's? $\alpha = .05$

Step 1

$$H_0$$
: p_s - p_c <0 vs. H_a : p_s - p_c >0

Step 2
$$z^* = \frac{(p'_s - p'_c) - (p_{0s} - p_{0c})}{\sqrt{p'_p q'_p \left[\frac{1}{n_s} + \frac{1}{n_c}\right]}}$$

$$\alpha = .05$$

$$\alpha = .05 \qquad \sqrt{p_p' q_p'} \left[\frac{1}{n_s} + \frac{1}{n_c} \right]$$

$$z^* = \frac{(.10 - .04) - (0)}{\sqrt{(.07)(.93) \left[\frac{1}{150} + \frac{1}{150}\right]}}$$

Product	Number Defective	Number Checked
Salesperson's	$x_s = 15$	$n_s = 150$
Competitor's	$x_c = 6$	$n_c = 150$

$$\frac{\alpha = .05}{\text{Step 3}} \sum_{\substack{* \ z^* = \\ \hline \sqrt{(.07)(.93) \left[\frac{1}{150} + \frac{1}{150}\right]}}} = 2.04$$

$$p'_s = \frac{x_s}{n_s} = \frac{15}{150} \qquad p'_c = \frac{x_c}{n_c} = \frac{6}{150}$$

$$p'_p = \frac{x_s + x_c}{n_s + n_c} = \frac{15 + 6}{150 + 150}$$

Step 4

$$z(\alpha) = 1.65$$

Step 5 Reject
$$H_0$$
 < .05
.02 < p - $value$ < .023 or 2.04 > 1.65

10: Inferences Involving Two Populations 10.5 Inference for Ratio of Two Variances Two Ind. Samples Hypothesis Testing Procedure

We can perform hypothesis tests on two variances

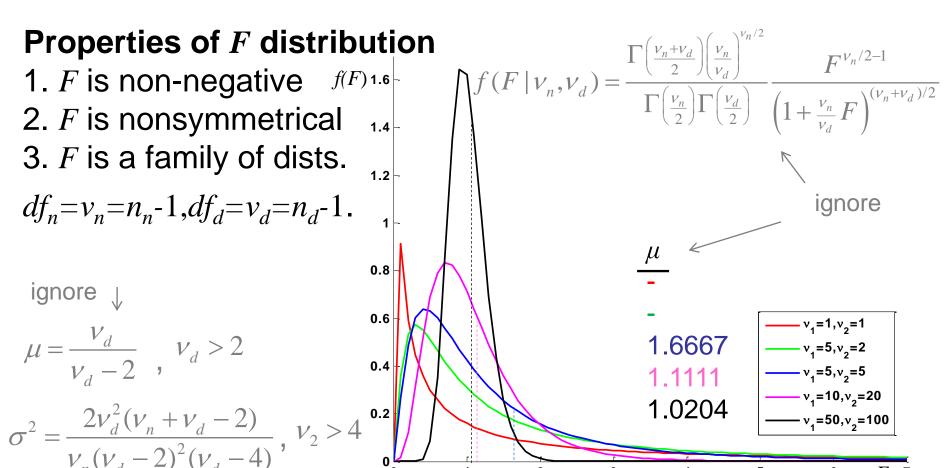
$$H_0: \sigma_1^2 \ge \sigma_2^2 \text{ vs. } H_a: \sigma_1^2 < \sigma_2^2$$

$$H_0: \sigma_1^2 \le \sigma_2^2$$
 vs. $H_a: \sigma_1^2 > \sigma_2^2$

$$H_0$$
: $\sigma_1^2 = \sigma_2^2$ vs. H_a : $\sigma_1^2 \neq \sigma_2^2$

Assumptions: Independent samples from normal distribution

Actually
$$\leftarrow$$
 ignore
$$F^* = \frac{\left[(n_n - 1)s_n^2 / \sigma^2 \right] / (n_n - 1)}{\left[(n_d - 1)s_d^2 / \sigma^2 \right] / (n_d - 1)}$$


Test Statistic for Equality of Variances

$$F^* = \frac{s_n^2}{s_d^2}$$
 with $df_n = n_n - 1$ and $df_d = n_d - 1$.

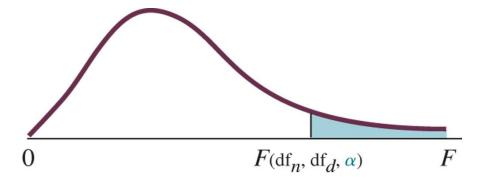
(10.16)

Use new table to find areas for new statistic.

10: Inferences Involving Two Populations 10.5 Inference for Ratio of Two Variances Two Ind. Samples

F 7

10: Inferences Involving Two Populations 10.5 Inference for Ratio of Two Variances Two Ind. Samples Hypothesis Testing Procedure


Test Statistic for Equality of Variances

$$F^* = \frac{S_n^2}{S_d^2}$$
 with $df_n = n_n - 1$ and $df_d = n_d - 1$. (10.16)

Will also need critical values.

$$P(F > F(df_n, df_d, \alpha)) = \alpha$$

Table 9
Appendix B
Page 722

 $F(\mathrm{df}_n,\mathrm{df}_d,\alpha)$

10: Inferences Involving Two Pops.

10.5 Inference Ratio of Two Variances

Example: Find F(5,8,0.05). $df_n = n_n - 1$ $df_d = n_d - 1$

$$df_n = n_n - 1 \qquad df_d = n_d - 1$$

Table 9, Appendix B, Page 722.

Degrees of Freedom for Numerator df_n $\alpha = 0.05$

						The state of the s	All the beautiful and the same	April 100 per		
f	1	2	3	4	<u>5</u>	6	7	8	9	10
for Denominator df_d	161. 18.5 10.1 7.71 6.61	200. 19.0 9.55 6.94 5.79	216. 19.2 9.28 6.59 5.41	225. 19.2 9.12 6.39 5.19	230. 19.3 9.01 6.26 5.05	234. 19.3 8.94 6.16 4.95	237. 19.4 8.89 6.09 4.88	239. 19.4 8.85 6.04 4.82	241. 19.4 8.81 6.00 4.77	242. 19.4 8.79 5.96 4.74
Degrees of Freedom	5.99 5.59 5.32 5.12 4.96	5.14 4.74 4.46 4.26 4.10	4.76 4.35 4.07 3.86 3.71	4.53 4.12 3.84 3.63 3.48	4.39 3.97 3.69 3.48 3.33	4.28 3.87 3.58 3.37 3.22	4.21 3.79 3.50 3.29 3.14	4.15 3.73 3.44 3.23 3.07	4.10 3.68 3.39 3.18 3.02	4.06 3.64 3.35 3.14 2.98
The contract of the contract o	1						Figure	s from Joh	ınson & Kul	by, 2012.

10: Inferences Involving Two Populations 10.5 Inference for Ratio of Two Variances Two Ind. Samples Hypothesis Testing Procedure

One tailed tests: Arrange $H_0 \& H_a$ so H_a is always "greater than"

$$H_0: \sigma_1^2 \ge \sigma_2^2 \text{ VS. } H_a: \sigma_1^2 < \sigma_2^2 \longrightarrow H_0: \sigma_2^2 / \sigma_1^2 \le 1 \text{ VS. } H_a: \sigma_2^2 / \sigma_1^2 > 1 \qquad F^* = \frac{s_2^2}{s_1^2}$$

$$H_0: \sigma_1^2 \le \sigma_2^2 \text{ VS. } H_a: \sigma_1^2 > \sigma_2^2 \longrightarrow H_0: \sigma_1^2 / \sigma_2^2 \le 1 \text{ VS. } H_a: \sigma_1^2 / \sigma_2^2 > 1 \qquad F^* = \frac{s_1^2}{s_2^2}$$

$$\text{Reject } H_0 \text{ if } F^* = s_n^2 / s_d^2 > F(df_n, df_d, \alpha).$$

Two tailed tests: put larger sample variance s^2 in numerator

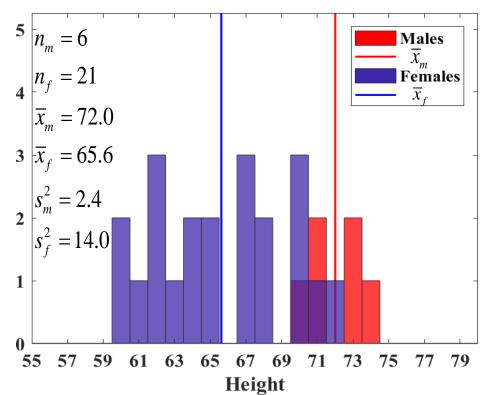
$$H_0: \sigma_1^2 = \sigma_2^2 \text{ vs. } H_a: \sigma_1^2 \neq \sigma_2^2 \longrightarrow H_0: \sigma_n^2 / \sigma_d^2 = 1 \text{ vs. } H_a: \sigma_n^2 / \sigma_d^2 \neq 1$$

$$\sigma_n^2 = \sigma_1^2 \text{ if } s_1^2 > s_2^2 \text{ } \sigma_n^2 = \sigma_2^2 \text{ if } s_2^2 > s_1^2$$

Reject H_0 if $F^* = s_n^2 / s_d^2 > F(df_n, df_d, \alpha/2)$.

10: Inferences Involving Two Populations 10.5 Inference for Ratio of Two Variances Two Ind. Samples

Is variance of female heights greater than that of males? $\alpha = .01$ 27 values


Step 1

$$H_0: \sigma_f^2 \le \sigma_m^2 \text{ vs. } H_a: \sigma_f^2 > \sigma_m^2$$

 $H_0: \sigma_f^2 / \sigma_m^2 \le 1 \text{ vs. } H_a: \sigma_f^2 / \sigma_m^2 > 1$

Step 2
$$F^* = \frac{S_f^2}{S_m^2}$$
 $df_m = 5$ $df_f = 20$ $\alpha = .01$

Step 3

Step 4
$$F^* = 14.0 / 2.4 = 5.83$$

 $F(20,5,.01) = 9.55$

Step 5 Do not reject H_0 since 5.83 < 9.55 and conclude σ_f^2 not > σ_m^2 .

Chapter 10: Inferences Involving Two Populations

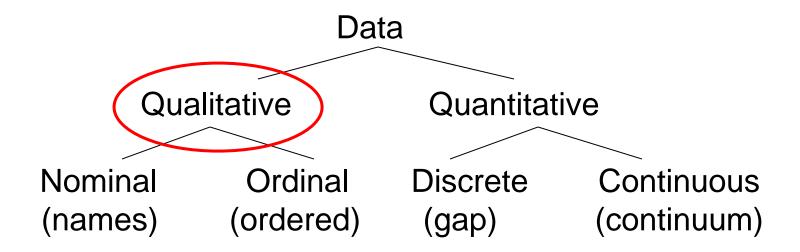
Questions?

```
Homework: Read Chapter 10.4-10.5
WebAssign
Chapter 10# 83, 85, 91, 98, 99, 101, 111,
113, 115, 117, 119, 125, 133
```

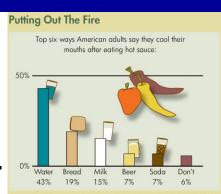
Lecture Chapter 11.1-11.3

Chapter 11: Applications of Chi-Square

Daniel B. Rowe, Ph.D.


Department of Mathematical and Statistical

1: Statistics


1.2 What is Statistics?

Data: The set of values collected from the variable from each of the elements that belong to the sample.

11: Applications of Chi-Square11.1 Chi-Square Statistic Cooling a Great Hot Taste

Quite often we have qualitative data in categories.

Example: Cooling mouth after hot spicy food.

Method	Water	Bread	Milk	Beer	Soda	Nothing	Other
Number	73	29	35	19	20	13	11

11.1 Chi-Square Statistic Data Setup

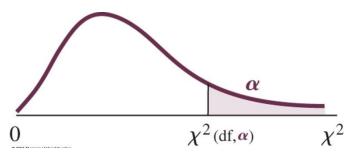
Example: Cooling mouth after hot spicy food.

Method	Water	Bread	Milk	Beer	Soda	Nothing	Other
Number	73	29	35	19	20	13	11

Data set up: k cells C_1, \ldots, C_k that n observations sorted into

Observed frequencies in each cell O_1, \ldots, O_k .

$$O_1$$
+...+ O_k = n


Expected frequencies in each cell $E_1, ..., E_k$.

$$E_1$$
+...+ E_k = n

Cell	C_1	C_2	•	C_k
Observed	O_1	O_2		O_k
Expected	E_{1}	E_{2}		E_k

11: Applications of Chi-Square 11.1 Chi-Square Statistic

Outline of Test Procedure

When we have observed cell frequencies $O_1, ..., O_k$, we can test to see if they match with some expected cell frequencies $E_1, ..., E_k$.

Test Statistic for Chi-Square

$$\chi^{2*} = \sum_{i=1}^{k} \frac{(O_i - E_i)^2}{E_i}$$
 (11.1)

If the O_i 's are different from E_i 's then χ^2 * is "large." Go through 5 hypothesis testing steps as before.

11.1 Chi-Square Statistic

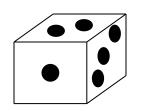
Assumption for using the chi-square statistic to make inferences based upon enumerative data: ... a random sample drawn from a population where each individual is classified according to the categories

$$\chi^{2*} = \sum_{i=1}^{k} \frac{(O_i - E_i)^2}{E_i} \qquad df = k - 1$$

observed cell frequencies $O_1, ..., O_k$, expected cell frequencies $E_1, ..., E_k$.

11.2 Inferences Concerning Multinomial Experiments

Example: We work for Las Vegas Gaming Commission. We have received many complaints that dice at particular casino are loaded (weighted, not fair). We confiscate all dice and test one. We roll it n=60 times. We get following data.


Cell, i	1	2	3	4	5	6
Observed, O_i	7	12	10	12	8	11
Expected, E_i	10	10	10	10	10	10

Expected Value for Multinomial Experiment:

$$E_i = np_i$$

(11.3)

11.2 Inferences Concerning Multinomial Experiments

Example: We roll it n=60 times. We get following data.

Cell, i	1	2	3	4	5	6
Observed, O_i	7	12	10	12	8	11
Expected, E_i	10	10	10	10	10	10
$E_i = 60(1/6)$						

Is the die fair? Need to go through the hypothesis testing procedure to determine if it is fair.

11: Applications of Chi-Square 11.2 Inferences Concerning Multinomial Experiments

Example: Is the die fair? $\chi^{2*} = \sum_{i=1}^{k} \frac{(O_i - E_i)^2}{E_i}$ D of F for Mult: df = k - 1 (11.2) Calculating χ^2

Number	Observed (O)	Expected (E)	0 – E	$(O-E)^2$	$\frac{(O-E)^2}{E}$
]	7	10	-3	9	0.9
2	12	10	2	4	0.4
3	10	10	0	0	0.0
4	12	10	2	4	0.4
5	8	10	-2	4	0.4
6	11	10]]	0.1
Total	60	60	0 (3)		$\chi^2* = 2.2$
	$O_1+\ldots+O_k=n$	$E_1+\ldots+E_k=n$	Fig	ure from Johns	son & Kuby, 2012

rigule Holli Johnson & Ruby, 2012.

11.2 Inference for Mean Difference Two Dependent Samples

Cell	1	2	3	4	5	6
Observed	7	12	10	12	8	11
Expected	10	10	10	10	10	10

k = 6

Observed different than expected? **Step 1** Fill in.

Step 2

 χ^2

Step 3

Step 4

Step 5

11.2 Inference for Mean Difference Two Dependent Samples

Cell	1	2	3	4	5	6
Observed	7	12	10	12	8	11
Expected	10	10	10	10	10	10

$$k = 6$$

Observed different than expected?

H₀:Die fair
$$p_i$$
's = $\frac{1}{6}$ H_a:Die not fair p_i 's $\neq \frac{1}{6}$
Step 2

Step 3

Step 4

Step 5

11.2 Inference for Mean Difference Two Dependent Samples

Cell	1	2	3	4	5	6
Observed	7	12	10	12	8	11
Expected	10	10	10	10	10	10

k = 6

Observed different than expected?

Step 1

$$H_0$$
: Die fair p_i 's = $\frac{1}{6}$ H_a : Die not fair p_i 's $\neq \frac{1}{6}$
Step 2
 $\chi^2 * = \sum_{i=1}^k \frac{(O_i - E_i)^2}{E_i}$ $df = k - 1$
 $\alpha = .05$

$$\chi^{2} * = \sum_{i=1}^{k} \frac{(O_{i} - E_{i})^{2}}{E_{i}} \qquad df = k - 1$$

$$\alpha = .05$$

Step 3 Step 4

11.2 Inference for Mean Difference Two Dependent Samples

Cell	1	2	3	4	5	6
Observed	7	12	10	12	8	11
Expected	10	10	10	10	10	10

$$k = 6$$

Observed different than expected?

H₀: Die fair
$$p_i$$
's = $\frac{1}{6}$ H_a: Die not fair p_i 's $\neq \frac{1}{6}$

Step 2

$$\chi^{2*} = \sum_{i=1}^{k} \frac{(O_i - E_i)^2}{E_i}$$
 $df = k - 1$
 $\alpha = .05$

Step 3 Step 4

$$\chi^2 * = 2.2$$

Step 5

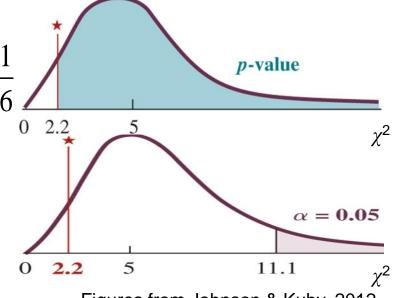
11.2 Inference for Mean Difference Two Dependent Samples

Cell	1	2	3	4	5	6
Observed	7	12	10	12	8	11
Expected	10	10	10	10	10	10

k = 6

Observed different than expected?

Step 1


H₀:Die fair p_i 's = $\frac{1}{6}$ H_a:Die not fair p_i 's $\neq \frac{1}{6}$

Step 2 $\chi^{2*} = \sum_{i=1}^{k} \frac{(O_i - E_i)^2}{E_i} \quad df = k - 1$ $\alpha = .05$

Step 3 Step 4

$$\chi^2 * = 2.2$$
 $\chi^2 (df, \alpha) = 11.1$
 $\chi^2 = 2.2$ $\chi^2 (df, \alpha) = 11.1$

Step 5

Figures from Johnson & Kuby, 2012.

11.2 Inference for Mean Difference Two Dependent Samples

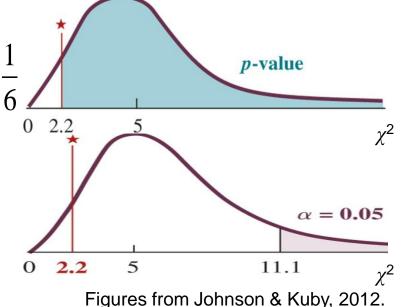
Cell	1	2	3	4	5	6
Observed	7	12	10	12	8	11
Expected	10	10	10	10	10	10

k = 6

Observed different than expected?

Step 1

H₀:Die fair p_i 's = $\frac{1}{6}$ H_a:Die not fair p_i 's $\neq \frac{1}{6}$


Step 2
$$\chi^{2*} = \sum_{i=1}^{k} \frac{(O_i - E_i)^2}{E_i} \quad df = k - 1$$

$$\alpha = .05$$

Step 3 Step 4
$$\chi^2 * = 2.2$$
 $\chi^2(df, \alpha) = 11.1$

$$df = 5$$

Since .05<
$$p$$
-value=.82 **or** because $\chi^2 * < \chi^2(df, \alpha)$, fail to reject H_0

3: Descriptive Analysis and Bivariate Data

3.1 Bivariate Data

Bivariate data: The values of two different variables that are obtained from the same population element.

Qualitative-Qualitative
Qualitative-Quantitative
Quantitative-Quantitative

When Qualitative-Qualitative Cross-tabulation tables or contingency tables Sometimes called r by c ($r \times c$)

3: Descriptive Analysis and Bivariate Data

3.1 Bivariate Data: two qualitative

Example:

Construct a 2×3 table.

Name	Gender	Major	Name	Gender	Major	Name	Gender	Major
Adams	M	LA	Feeney	M	Т	McGowan	M	ВА
Argento	F	BA	Flanigan	M	LA	Mowers	F	BA
Baker	M	LA	Hodge	F	LA	Ornt	M	T
Bennett	F	LA	Holmes	M	T	Palmer	F	LA
Brand	M	T	Jopson	F	T	Pullen	M	T
Brock	M	ВА	Kee	M	ВА	Rattan	M	ВА
Chun	F	LA	Kleeberg	M	LA	Sherman	F	LA
Crain	M	T	Light	M	BA	Small	F	Т
Cross	F	BA	Linton	F	LA	Tate	M	ВА
Ellis	F	BA	Lopez	M	T	Yamamoto	M	LA

		Major	
Gender	LA	BA	T
M F	[(5) (6)	(6) (4)	(7) (2)

M = male

F = female

LA = liberal arts

BA = business admin

T = technology

11.3 Inferences Concerning Contingency Tables

Example:

Construct a 2×3 table.

Each in group of 300 students identified as male or female and asked if preferred classes in math-science, social science, or humanities.

Sample Results for Gender and Subject Preference

	Favorite Subject Area				
Gender	Math-Science (MS)	Social Science (SS)	Humanities (H)	Total	
Male (M) Female (F)	3 <i>7</i> 3 <i>5</i>	41 72	44 71	122 178	
Total	72	113	115	300	

11: Applications of Chi-Square 11.3 Inferences Concerning Contingency Tables Test of Independence

Is "Preference for math-science, social science, or humanities" ... "independent of the gender of a college student?"

Sample Results for Gender and Subject Preference

Gender	Math-Science (MS)	Social Science (SS)	Humanities (H)	Total
Male (M) Female (F)	3 <i>7</i> 35	41 72	44 71	122 178
Total	72	113	115	300

11: Applications of Chi-Square 11.3 Inferences Concerning Contingency Tables *Test of Independence*

Is "Preference for math-science, social science, or humanities" ... "independent of the gender of a college student?"

There is a Hypothesis test (of independence) to determine this.

Is Favorite Subject independent of Gender.

Similar to Example with the Die, now have rows i and columns j.

Observed values, O_{ii} 's.

$$\chi^{2*} = \sum_{all\ cells} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}}$$

What are E_{ij} 's?

	Favorite Subject Area					
Gender	Math-Science (MS)	Social Science (SS)	Humanities (H)	Total		
Male (M) Female (F)	37 35	41 72	44 71	122 1 <i>7</i> 8		
Total	72	113	115	300		

11.3 Inferences Concerning Contingency Tables

Test of Independence

$$\chi^2 * = \sum_{all \ cells} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$$

D of F for Contingency Tables:

$$df = (r-1)(c-1)$$

(11.4)

Expected Frequencies for Contingency Tables

$$E_{ij} = \frac{row\ total \times column\ total}{grand\ total} = \frac{R_i C_j}{n}$$

(11.5)

Where does this formula for E_{ij} 's come from?

rows i and columns j

4: Probability

4.5 Independent Events

Independent events: Two events are independent if the occurrence or nonoccurence of one gives us no information about the likeliness of occurrence for the other.

```
In algebra: P(A \mid B) = P(A \mid B) = P(A \mid \text{not } B)
```

In words:

- 1. Prob of *A* unaffected by knowledge that *B* has occurred, not occurred, or no knowledge.
- 2. ...
- 3. ...

4: Probability

4.5 Independent Events

Two events A and B are independent if the probability of one is not "influenced" by the occurrence or nonoccurrence of the other.

Two Events *A* and *B* are independent if:

- 1. P(A) = P(A|B)
- 2. P(B) = P(B|A)
- 3. $P(A \text{ and } B) = P(A) \cdot P(B)$

Examples:?

11: Applications of Chi-Square 11.3 Inferences Concerning Contingency Tables *Test of Independence*

$$E_{ij} = \frac{R_i C_j}{n}$$

Where does this formula for E_{ij} 's come from?

	Favorite Subject Area					
Gender	Math-Science (MS)	Social Science (SS)	Humanities (H)	Total		
Male (M) Female (F)	3 <i>7</i> 35	41 72	44 71	122 1 <i>7</i> 8		
Total	72	113	115	300		

If Favorite Subject (column variable) is independent of Gender (row variable), then

$$P(MS \mid M) = P(MS \mid F) = P(MS)$$

$$P(A) = P(A \mid B)$$

 $P(A \text{ and } B) = P(A) \cdot P(B)$

11.3 Inferences Concerning Contingency Tables

Test of Independence

$$E_{ij} = \frac{R_i C_j}{n}$$

Where does this formula for E_{ij} 's come from?

	MS	SS	н	Total
Male Female	29.28 42.72	45.95 67.05	46.77 68.23	122.00 178.00
Total	72.00	113.00	115.00	300.00

P(M) = 122/300

$$P(F) = 178/300$$

$$P(MS) = 72/300$$

$$P(SS) = 113/300$$

$$P(H) = 115/300$$

If Favorite Subject is independent of Gender, then

$$P(M \text{ and } MS) = P(M)P(MS) = (122 / 300)(72 / 300)$$

$$E(M \text{ and } MS) = nP(M)P(MS) = 300(122/300)(72/300)$$

$$E(M \text{ and } MS) = 122 \times 72 / 300$$

11: Applications of Chi-Square 11.3 Inferences Concerning Contingency Tables *Test of Independence*

$$E_{ij} = \frac{R_i C_j}{n}$$

Where does this formula for E_{ij} 's come from?

	F	avorite Subject Area	ı	
Gender	MS	SS	н —	Total
Male Female	37 (29.28) 35 (42.72)	41 (45.95) 72 (67.05)	44 (46.77) 71 (68.23)	122 1 <i>7</i> 8
Total	72	113	115	300

If Favorite Subject is independent of Gender, then

$$\chi^{2*} = \sum_{\text{all cells}} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}} < \chi^{2}(2,0.05)$$

$$\alpha = 0.05$$

$$df = (r-1)(c-1) = (2-1)(3-1)$$

$$\chi^{2*} = 4.604 < \chi^{2}(2,0.05) = 5.99$$

11: Applications of Chi-Square 11.3 Inferences Concerning Contingency Tables *Test of Independence*

 $E_{ij} = \frac{R_i C_j}{n}$

Expected Frequencies for	an $r imes c$ Contingency Ta	ble
---------------------------------	-------------------------------	-----

	Column						
Row	1	2		jth column		с	Total
1	$\frac{R_1 \times C_1}{n}$ $R_2 \times C_1$	$\frac{R_1 \times C_2}{n}$		$\frac{R_1 \times C_i}{n}$		$\frac{R_1 \times C_c}{n}$	R_1
2	$ \begin{array}{c c} R_2 \times C_1 \\ \hline n \\ \vdots \end{array} $			÷			R ₂ :
ith row	$\frac{R_i \times C_1}{n}$			$\frac{R_i \times C_i}{n}$			R_i
: r	$\frac{\vdots}{R_r \times C_1}$:			÷
Total	C_1	C_2		C_i			n

$$\chi^{2*} = \sum_{all\ cells} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}} < \chi^{2}((r-1)(c-1), \alpha)$$

11: Applications of Chi-Square 11.3 Inferences Concerning Contingency Tables

Test of Homogeneity

$$E_{ij} = \frac{R_i C_j}{n}$$

Is the distribution within all rows the same for all rows?

	Governor's Proposal		
Residence	Favor	Oppose	Total
Urban Suburban Rural	143 98 13	57 102 87	200 200 100
Total	254	246	500

If so, then
$$P(F \text{ and } Urban) = P(F)P(U)$$

 $E(F \text{ and } Urban) = nP(F)P(U)$
 $E(F \text{ and } Urban) = 500(254 / 500)(200 / 500)$

11: Applications of Chi-Square 11.3 Inferences Concerning Contingency Tables Test of Homogeneity

$$E_{ij} = \frac{R_i C_j}{n}$$

Is the distribution within all rows the same for all rows?

	Governor's Proposal		
Residence	Favor	Oppose	Total
Urban Suburban Rural	143 98 13	57 102 87	200 200 100
Total	254	246	500

$$\chi^{2*} = \sum_{\text{all cells}} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}} < \chi^{2}((r-1)(c-1), \alpha) \qquad \alpha = 0.05$$

$$df = (r-1)(c-1) = (3-1)(2-1)$$

Chapter 11: Applications of Chi-Square

Questions?

Homework: Read Chapter 11

WebAssign

Chapter 11 # 3, 5, 11, 15, 21, 49, 53