Class 22

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

Agenda:

Recap Chapter 10.2-10.3

Lecture Chapter 10.4-10.5

Recap Chapter 10.2-10.3

10: Inferences Involving Two Populations 10.2 Inference for Mean Difference Two Dependent Samples Confidence Interval Procedure

Paired Difference

$$d = x_1 - x_2 (10.1)$$

$$\overline{d} = \frac{1}{n} \sum_{i=1}^{n} d_{i} \qquad s_{d}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (d_{i} - \overline{d})^{2} \qquad \mu_{\overline{d}} = \mu_{d} \quad \sigma_{\overline{d}} = \frac{\sigma_{d}}{\sqrt{n}}$$

With σ_d unknown, a 1- α confidence interval for $\mu_d = (\mu_1 - \mu_2)$ is:

Confidence Interval for Mean Difference (Dependent Samples)

$$\overline{d} - t(df, \alpha/2) \frac{s_d}{\sqrt{n}}$$
 to $\overline{d} + t(df, \alpha/2) \frac{s_d}{\sqrt{n}}$ where $df=n-1$ (10.2)

10: Inferences Involving Two Populations 10.2 Inference for Mean Difference Two Dependent Samples

Car	1	2	3	4	5	6
Brand A	125	64	94	38	90	106
Brand B	133	65	103	37	102	115

Example:

Construct a 95% CI for mean difference in Brand B – A tire wear.

$$d_{i}$$
's: 8, 1, 9, -1, 12, 9
$$n = 6 \qquad df = 5 \qquad t(df, \alpha/2) = 2.57$$

$$\bar{d} = 6.3 \qquad \alpha = 0.05 \qquad s_{d}^{2} = \frac{1}{n}$$

$$s_{d} = 5.1 \qquad \bar{d} \pm t(df, \alpha/2) \frac{s_{d}}{\sqrt{n}} \longrightarrow (0.090, 11.7)$$

$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_{i}$$

$$s_{d}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (d_{i} - \bar{d})^{2}$$

10: Inferences Involving Two Populations 10.2 Inference for Mean Difference Two Dependent Samples

n = 6 8, 1, 9, -1, 12, 9

Car	1	2	3	4	5	6
Brand A	125	64	94	38	90	106
Brand B	133	65	103	37	102	115

Example:

Test mean difference of Brand B minus Brand A is zero.

Step 1
$$H_0$$
: μ_d =0 vs. H_a : $\mu_d \neq 0$

Step 2

$$df = 5 \qquad t^* = \frac{\overline{d} - \mu_{d0}}{s_d / \sqrt{n}}$$

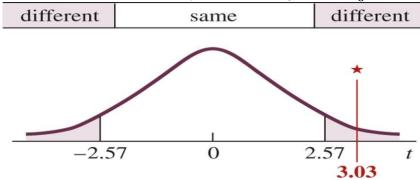
$$\alpha = .05$$

Step 3
$$\bar{d} = 6.3$$

 $s_d = 5.1$ $t^* = \frac{6.3 - 0}{5.1/\sqrt{6}} = 3.03$

Step 4
$$t(df, \alpha/2) = 2.57$$

Step 5 Since $t^* > t(df, \alpha/2)$, reject H_0



Conclusion: Significant difference in tread wear at .05 level.

10: Inferences Involving Two Populations 10.3 Inference for Mean Difference Two Independent Samples **Confidence Interval Procedure**

With σ_1 and σ_2 unknown, a 1- α confidence interval for $\mu_1 - \mu_2$ is:

Confidence Interval for Mean Difference (Independent

Samples)

$$(\overline{x}_{1} - \overline{x}_{2}) - t(df, \alpha / 2) \sqrt{\left(\frac{s_{1}^{2}}{n_{1}}\right) + \left(\frac{s_{2}^{2}}{n_{2}}\right)} \text{ to } (\overline{x}_{1} - \overline{x}_{2}) + t(df, \alpha / 2) \sqrt{\left(\frac{s_{1}^{2}}{n_{1}}\right) + \left(\frac{s_{2}^{2}}{n_{2}}\right)}$$

where df is either calculated or smaller of df_1 , or df_2

Actually, this is for $\sigma_1 \neq \sigma_2$.

Next larger number than
$$\left(s_{1}^{2} - s_{2}^{2}\right)^{2} / \left(\left(s_{1}^{2} / n_{1}\right)^{2}\right)$$

 $df = \left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2 / \left(\frac{\left(s_1^2 / n_1\right)^2}{n_1 - 1} + \frac{\left(s_2^2 / n_2\right)^2}{n_2 - 1}\right)$ If using a computer program.

If not using a computer program.

There are three possible hypothesis pairs for the difference in

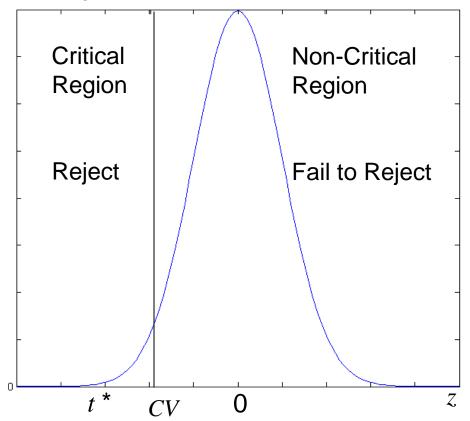
means.

$$H_0$$
: μ_1 - $\mu_2 \ge 0$ vs. H_a : μ_1 - $\mu_2 < 0$

Reject H_0 if less than

$$t^* = \frac{(\overline{x}_1 - \overline{x}_2) - 0}{\sqrt{(s_1^2/n_1) + (s_2^2/n_2)}} - t(df, \alpha)$$

data indicates μ_1 - μ_2 < 0 because $\bar{x}_1 - \bar{x}_2$ is "a lot" smaller than 0.



There are three possible hypothesis pairs for the difference in

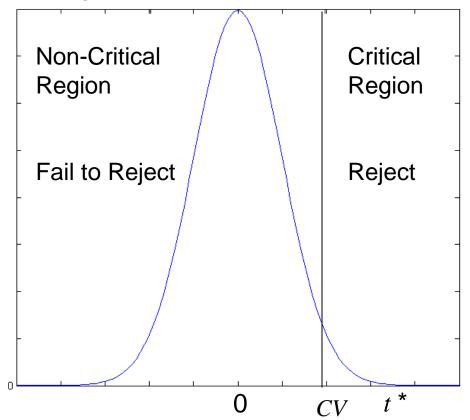
means.

$$H_0$$
: μ_1 - $\mu_2 \le 0$ vs. H_a : μ_1 - $\mu_2 > 0$

Reject H_0 if greater then

$$t^* = \frac{(\bar{x}_1 - \bar{x}_2) - 0}{\sqrt{(s_1^2/n_1) + (s_2^2/n_2)}} \qquad t(df, \alpha)$$

data indicates μ_1 - $\mu_2 > 0$ because $\overline{x}_1 - \overline{x}_2$ is "a lot" larger than 0.



There are three possible hypothesis pairs for the difference in

means.

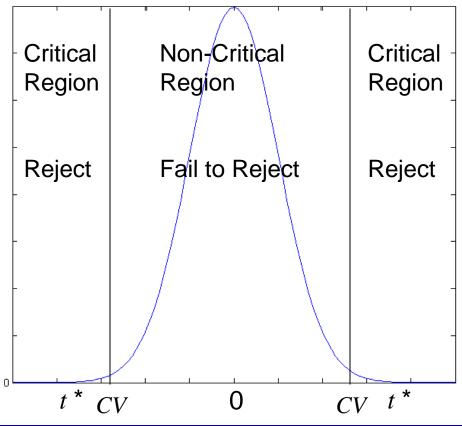
$$H_0$$
: μ_1 - μ_2 = 0 vs. H_a : μ_1 - $\mu_2 \neq 0$

Reject H_0 if

less than

$$t^* = \frac{(\bar{x}_1 - \bar{x}_2) - 0}{\sqrt{(s_1^2/n_1) + (s_2^2/n_2)}} - t(df, \alpha/2)$$
or if
$$t^* = \frac{(\bar{x}_1 - \bar{x}_2) - 0}{\sqrt{(s_1^2/n_1) + (s_2^2/n_2)}}$$
 is greater than
$$t(df, \alpha/2)$$

data indicates μ_1 - $\mu_2 \neq 0$, $\overline{x}_1 - \overline{x}_2$



10: Inferences Involving Two Populations

10.3 Inference Mean Difference Confidence Interval

Sample	Number	Mean	Standard Deviation
Female (f) Male (m)	$n_f = 20$ $n_m = 30$	$\overline{x}_f = 63.8$ $\overline{x}_m = 69.8$	$s_f = 2.18$ $s_m = 1.92$

Example:

Interested in difference in mean heights between men and women. The heights of 20 females and 30 males is measured. Construct a 95% confidence interval for $\mu_m - \mu_f$, $\sigma_m \& \sigma_f$ unknown

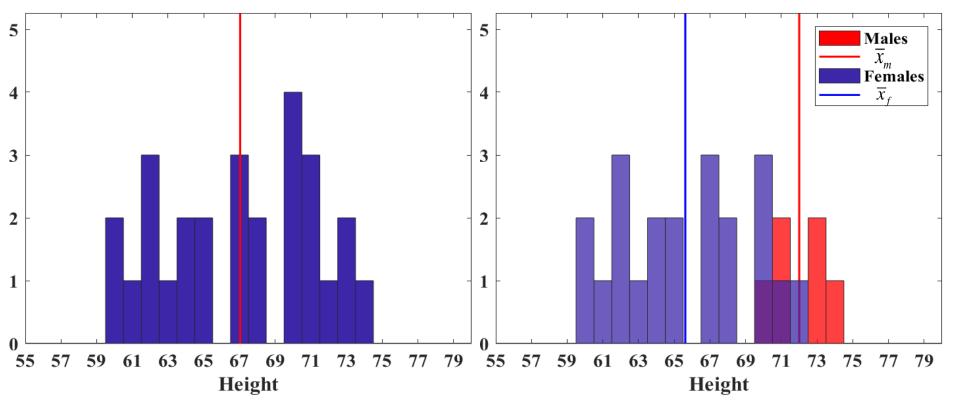
$$(\overline{x}_{m} - \overline{x}_{f}) \pm t(df, \alpha/2) \sqrt{\left(\frac{s_{m}^{2}}{n_{m}}\right) + \left(\frac{s_{f}^{2}}{n_{f}}\right)}$$

$$(69.8 - 63.8) \pm 2.09 \sqrt{\left(\frac{(1.92)^{2}}{30}\right) + \left(\frac{(2.18)^{2}}{20}\right)}$$
 therefore 4.75 to 7.25

$$\alpha = 0.05$$

 $t(19,.025) = 2.09$

10: Inferences Involving Two Populations 10.3 Inference for Mean Difference Two Independent Samples Hypothesis Testing Procedure 27 values

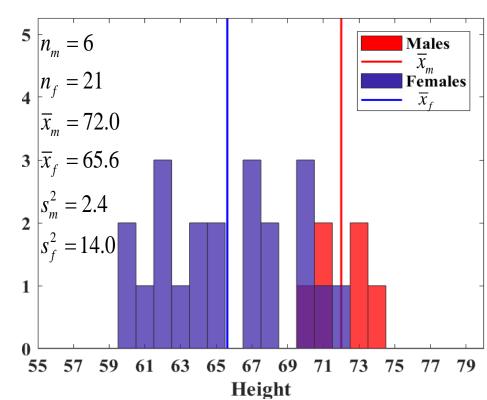


Is the height of males = height of females at α =.05?

10: Inferences Involving Two Populations 10.3 Inference for Mean Difference Two Independent Samples **Hypothesis Testing Procedure** 27 values

Step 1

$$H_0$$
: $\mu_f = \mu_m$ VS. H_a : $\mu_f \neq \mu_m$
Step 2
 $t^* = \frac{(\overline{x}_m - \overline{x}_f) - (\mu_{0,m} - \mu_{0,f})}{\sqrt{\left(\frac{s_m^2}{n_m}\right) + \left(\frac{s_f^2}{n_f}\right)}}$
Step 3
 $t^* = \frac{(72.0 - 65.6) - (0)}{\sqrt{\left(\frac{2.4}{6}\right) + \left(\frac{14.0}{21}\right)}} = 6.17$

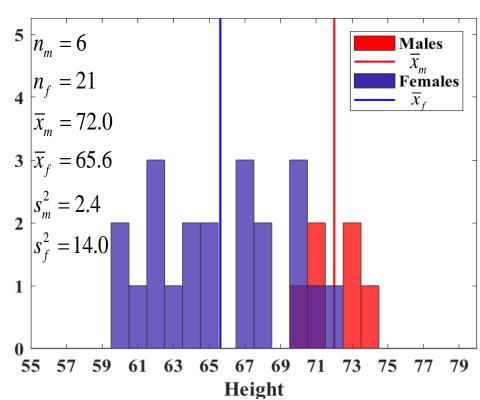


 $t(df, \alpha/2) = 2.57$ Step 5 Reject $H_0 6.17 > 2.57$, height males \neq height females

10: Inferences Involving Two Populations 10.3 Inference for Mean Difference Two Independent Samples Hypothesis Testing Procedure 27 values

Step 1

$$H_0$$
: $\mu_f = \mu_m$ VS. H_a : $\mu_f \neq \mu_m$
Step 2
 $t^* = \frac{(\bar{x}_m - \bar{x}_f) - (\mu_{0,m} - \mu_{0,f})}{\sqrt{\left(\frac{s_m^2}{n_m}\right) + \left(\frac{s_f^2}{n_f}\right)}}$
Step 3
 $t^* = \frac{(72.0 - 65.6) - (0)}{\sqrt{\left(\frac{2.4}{6}\right) + \left(\frac{14.0}{21}\right)}} = 6.17$



 $P(|t^*| > 6.17) = .0016$ Step 5 Reject H_0 .002 < .05 , height males \neq height females

Chapter 10: Inferences Involving Two Populations

Questions?

Homework: Read Chapter 10.3

WebAssign

Chapter 10 # 41, 45, 53, 57, 58, 59, 63

Lecture Chapter 10.4-10.5

9: Inferences Involving One Population

9.2 Inference about the Binomial Probability of Success Chapter 5

We talked about a Binomial experiment with two outcomes. Each performance of the experiment is called a trial. Each trial is independent.

$$P(x) = \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x}$$

$$n = 1, 2, 3, ...$$

 $0 \le p \le 1$
 $x = 0, 1, ..., n$

n = number of trials or times we repeat the experiment.

x = the number of successes out of n trials.

p =the probability of success on an individual trial.

When we perform a binomial experiment we can estimate the probability of heads as

Sample Binomial Probability

i.e. number of H out of n flips

$$p' = \frac{x}{n} \tag{9.3}$$

where x is the number of successes in n trials.

This is a point estimate. Recall the rule for a CI is point estimate ± some amount

Background

For Binomial, where x is number of successes out of n trials.

We said that mean(cx) = cnp and $variance(cx) = c^2npq$.

$$\rightarrow$$
 mean $(x/n) = p$ and variance $(x/n) = pq/n$.

We are often interested in comparisons between proportions $p_1 - p_2$. There is another rule that says that if x_1 and x_2 are random variables, then $mean(x_1 \pm x_2) = mean(x_1) \pm mean(x_2)$

further, mean
$$\left(\frac{x_1}{n_1} \pm \frac{x_2}{n_2}\right) = \text{mean}\left(\frac{x_1}{n_1}\right) \pm \text{mean}\left(\frac{x_2}{n_2}\right)$$

and variance $\left(\frac{x_1}{n_1} \pm \frac{x_2}{n_2}\right) = \frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}$.

That is where 1. and 2. in the green box below come from

If independent samples of size n_1 and n_2 are drawn ... with $p_1=P_1$ (success) and $p_2=P_2$ (success), then the sampling distribution of $p_1'-p_2'$ has these properties:

1. mean
$$\mu_{p_1'-p_2'} = p_1 - p_2$$

2. standard error $\sigma_{p_1'-p_2'} = \sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}}$ (10.10)

3. approximately normal dist if n_1 and n_2 are sufficiently large. ie I $n_1, n_2 > 20$ II $n_1p_1, n_1q_1, n_2p_2, n_2q_2 > 5$ III sample < 10% of pop

Assumptions for ... difference between two proportions p_1 - p_2 : The n_1 ... and n_2 random observations ... are selected independently from two populations that are not changing

Confidence Interval for the Difference between Two Proportions $p_1 - p_2$

$$(p_1' - p_2') - z(\alpha/2) \sqrt{\frac{p_1' q_1'}{n_1} + \frac{p_2' q_2'}{n_2}} \quad \text{to} \quad (p_1' - p_2') + z(\alpha/2) \sqrt{\frac{p_1' q_1'}{n_1} + \frac{p_2' q_2'}{n_2}}$$
where $p_1' = \frac{x_1}{n_1}$ and $p_2' = \frac{x_2}{n_2}$. (10.11)

Example: Another Semester

Construct a 99% CI for proportion of female A's minus male A's difference $p_f - p_m$. Fill in.

120 values
$$z(\alpha/2) =$$

$$n_m = 52$$

$$n_f = 68$$

$$p'_f = \frac{x_f}{n_f} =$$

$$x_m = 21$$

$$x_f = 43$$

$$p'_m = \frac{x_m}{n_m} =$$

$$(p'_f - p'_m) \pm z(\alpha/2) \sqrt{\frac{p'_f q'_f}{n_f} + \frac{p'_m q'_m}{n_m}}$$

Example: $\alpha = 0.01$

Construct a 99% CI for proportion of female A's minus male A's difference $p_f - p_m$.

120 values
$$z(\alpha/2) = 2.58$$
 $(p'_f - p'_m) \pm z(\alpha/2) \sqrt{\frac{p'_f q'_f}{n_f} + \frac{p'_m q'_m}{n_m}}$
 $n_m = 52$ $p'_f = \frac{x_f}{n_f} = \frac{43}{68} = .62$ $x_m = 21$ $x_f = 43$ $p'_m = \frac{x_m}{n_m} = \frac{21}{52} = .40$

Example:

 $\alpha = 0.01$

Top 5 of 6 exams.

Construct a 99% CI for proportion of female A's minus male A's difference $p_f - p_m$ for a previous class.

120 values
$$z(\alpha/2) = 2.58$$
 $(p'_f - p'_m) \pm z(\alpha/2) \sqrt{\frac{p'_f q'_f}{n_f} + \frac{p'_m q'_m}{n_m}}$
 $n_m = 52$ $n_f = 68$ $p'_f = \frac{x_f}{n_f} = \frac{43}{68} = .62$ $(.62 - .40) \pm 2.58 \sqrt{\frac{(.62)(.38)}{68} + \frac{(.40)(.60)}{52}}$
 $x_m = 21$ $x_f = 43$ $p'_m = \frac{x_m}{n_m} = \frac{21}{52} = .40$ $-.003$ to .460

10: Inferences Involving Two Populations 10.4 Inference for Difference between Two Proportions **Hypothesis Testing Procedure**

We can perform hypothesis tests on the proportion

$$H_0: p_1 \ge p_2 \text{ vs. } H_a: p_1 < p_2$$

$$H_0: p_1 \le p_2 \text{ vs. } H_a: p_1 > p_2$$

$$H_0$$
: $p_1 = p_2$ vs. H_a : $p_1 \neq p_2$

$$\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2} = pq \left[\frac{1}{n_1} + \frac{1}{n_2} \right]$$

when
$$p_1 = p_2 = p$$
.

Test Statistic for the Difference between two Proportions-

$$z^* = \frac{(p_1' - p_2') - (p_{0,1} - p_{0,2})}{\sqrt{pq \left[\frac{1}{n_1} + \frac{1}{n_2}\right]}} \qquad \text{Population Proportions Known}$$

$$p_1' = \frac{x_1}{n_1} \quad p_2' = \frac{x_2}{n_2} \qquad (10.12)$$

$$\sqrt{pq\left[\frac{1}{n_1} + \frac{1}{n_2}\right]}$$

$$p_1' = \frac{x_1}{n_1}$$
 $p_2' = \frac{x_2}{n_2}$

(10.12)

10: Inferences Involving Two Populations 10.4 Inference for Difference between Two Proportions Hypothesis Testing Procedure

Test Statistic for the Difference between two Proportions-Population Proportions **UnKnown**

$$z^* = \frac{(p_1' - p_2') - (p_{0,1} - p_{0,2})}{\sqrt{p_p' q_p' \left[\frac{1}{n_1} + \frac{1}{n_2}\right]}}$$

$$p_p \text{ estimated}$$
(10.15)

where we assume $p_1=p_2$ and use pooled estimate of proportion

$$p'_{1} = \frac{x_{1}}{n_{1}} \quad p'_{2} = \frac{x_{2}}{n_{2}} \qquad \frac{p_{1}q_{1}}{n_{1}} + \frac{p_{2}q_{2}}{n_{2}} = pq \left[\frac{1}{n_{1}} + \frac{1}{n_{2}}\right] \qquad p'_{p} = \frac{x_{1} + x_{2}}{n_{1} + n_{2}} \qquad q'_{p} = 1 - p'_{p}$$

Is proportion of Salesman's defectives less than Competitor's? $\alpha = .05$

Step 1 Fill in.

Step 2

Product	Number Defective	Number Checked
Salesperson's	$x_s = 15$	$n_s = 150$
Competitor's	$x_c = 6$	$n_c = 150$

Step 3

Step 4

Step 5

Is proportion of Salesman's defectives less than Competitor's? $\alpha = .05$

Step 1 H_0 : p_s - p_c ≤0 vs. H_a : p_s - p_c >0 Step 2

Product	Number Defective	Number Checked
Salesperson's	$x_s = 15$	$n_s = 150$
Competitor's	$x_c = 6$	$n_c = 150$

Step 3

Step 4

Step 5

Is proportion of Salesman's defectives less than Competitor's? $\alpha = .05$

Step 1

$$H_0: p_s - p_c \le 0$$
 vs. $H_a: p_s - p_c > 0$
Step 2
 $z^* = \frac{(p'_s - p'_c) - (p_{0,s} - p_{0,c})}{\sqrt{p'_p q'_p \left[\frac{1}{n_s} + \frac{1}{n_c}\right]}}$
Step 3

Product	Number Defective	Number Checked
Salesperson's	$x_s = 15$	$n_s = 150$
Competitor's	$x_c = 6$	$n_c = 150$

Step 4

Step 5

Is proportion of Salesman's defectives less than Competitor's? $\alpha = .05$

2.04

Step 1 <i>H</i> ₀ : <i>p</i> _s - <i>p</i>	_c ≤0 vs. <i>H</i> _a : <i>p</i> _s - <i>p</i> _c >0
Step 2 _{7* =}	$(p'_s - p'_c) - (p_{0,s} - p_{0,c})$
$\alpha = .05$ Step 3 $7^* =$	$ \sqrt{p'_{p}q'_{p}\left[\frac{1}{n_{s}} + \frac{1}{n_{c}}\right]} $ $ (.1004) - (0) $
Step 4	$\sqrt{(.07)(.93) \left[\frac{1}{150} + \frac{1}{150} \right]}$

Step 5

Product	Number Defective	Number Checked
Salesperson's	$x_s = 15$	$n_s = 150$
Competitor's	$x_c = 6$	$n_c = 150$

$$p'_{s} = \frac{x_{s}}{n_{s}} = \frac{15}{150} \qquad p'_{c} = \frac{x_{c}}{n_{c}} = \frac{6}{150}$$
$$p'_{p} = \frac{x_{s} + x_{c}}{n_{s} + n_{c}} = \frac{15 + 6}{150 + 150}$$

Is proportion of Salesman's defectives less than Competitor's? $\alpha = .05$

Step 1 $H_0: p_s - p_c \le 0 \text{ vs. } H_a: p_s - p_c > 0$

Step 2
$$7* = \frac{(p'_s - p'_c) - (p_{0,s} - p_{0,c})}{\sqrt{2}}$$

Step 2
$$z^* = \frac{(p'_s - p'_c) - (p_{0,s} - p_{0,c})}{\sqrt{p'_p q'_p \left[\frac{1}{n_s} + \frac{1}{n_c}\right]}}$$

$$\alpha = .05$$

Step 3
$$z^* = \frac{(.10 - .04) - (0)}{\sqrt{1 + .04}}$$

Step 3 $z^* = \frac{(.10 - .04) - (0)}{\sqrt{(.07)(.93) \left[\frac{1}{150} + \frac{1}{150}\right]}} = 2.04$

Step 4

Step 5

ProductNumber DefectiveNumber CheckedSalesperson's
$$x_s = 15$$
 $n_s = 150$ Competitor's $x_c = 6$ $n_c = 150$

$$p'_{s} = \frac{x_{s}}{n_{s}} = \frac{15}{150} \qquad p'_{c} = \frac{x_{c}}{n_{c}} = \frac{6}{150}$$
$$p'_{p} = \frac{x_{s} + x_{c}}{n_{s} + n_{c}} = \frac{15 + 6}{150 + 150}$$

Is proportion of Salesman's defectives less than Competitor's? $\alpha = .05$

Step 1

$$H_0$$
: p_s - p_c <0 vs. H_a : p_s - p_c >0

Step 2
$$z^* = \frac{(p_s' - p_c') - (p_{0,s} - p_{0,c})}{\sqrt{}}$$

Step 2
$$z^* = \frac{(p'_s - p'_c) - (p_{0,s} - p_{0,c})}{\sqrt{p'_p q'_p \left[\frac{1}{n_s} + \frac{1}{n_c}\right]}}$$

$$z^* = \frac{(.10 - .04) - (0)}{\sqrt{(.07)(.93) \left[\frac{1}{150} + \frac{1}{150} \right]}}$$

Product	Number Defective	Number Checked
Salesperson's	$x_s = 15$	$n_s = 150$
Competitor's	$x_c = 6$	$n_c = 150$

$$\frac{\alpha = .05}{\text{Step 3}} = \frac{\sqrt{\frac{p_p q_p}{n_s} n_c}}{(.10 - .04) - (0)} = 2.04$$

$$z^* = \frac{(.10 - .04) - (0)}{\sqrt{(.07)(.93) \left[\frac{1}{150} + \frac{1}{150}\right]}} = 2.04$$

$$p'_s = \frac{x_s}{n_s} = \frac{15}{150}$$

$$p'_c = \frac{x_c}{n_c} = \frac{6}{150}$$

$$p'_p = \frac{x_s + x_c}{n_s + n_c} = \frac{15 + 6}{150 + 150}$$

Step 4

$$z(\alpha) = 1.65$$

Step 5 Reject
$$H_0$$
 < .05
.02 < p - $value$ < .023 or 2.04 > 1.65

10: Inferences Involving Two Populations 10.5 Inference for Ratio of Two Variances Two Ind. Samples Hypothesis Testing Procedure

We can perform hypothesis tests on two variances

$$H_0: \sigma_1^2 \ge \sigma_2^2 \text{ vs. } H_a: \sigma_1^2 < \sigma_2^2$$

$$H_0: \sigma_1^2 \le \sigma_2^2$$
 vs. $H_a: \sigma_1^2 > \sigma_2^2$

$$H_0$$
: $\sigma_1^2 = \sigma_2^2$ vs. H_a : $\sigma_1^2 \neq \sigma_2^2$

Assumptions: Independent samples from normal distribution

Actually
$$\leftarrow$$
 ignore
$$F^* = \frac{\left[(n_n - 1)s_n^2 / \sigma^2 \right] / (n_n - 1)}{\left[(n_d - 1)s_d^2 / \sigma^2 \right] / (n_d - 1)}$$

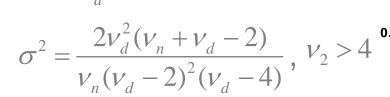
Test Statistic for Equality of Variances

$$F^* = \frac{s_n^2}{s_d^2}$$
 with $df_n = n_n - 1$ and $df_d = n_d - 1$.

(10.16)

Use new table to find areas for new statistic.

Properties of *F* distribution $f(F | v_n, v_d) = \frac{\Gamma\left(\frac{v_n + v_d}{2}\right) \left(\frac{v_n}{v_d}\right)^{v_{n/2}}}{\Gamma\left(\frac{v_n}{2}\right) \Gamma\left(\frac{v_d}{2}\right)} \frac{F^{v_n/2 - 1}}{\left(1 + \frac{v_n}{\cdots} F\right)^{(v_n + v_d)/2}}$ 1. F is non-negative f(F) 1.6 2. *F* is nonsymmetrical 1.4 3. *F* is a family of dists. $df_{n}=v_{n}=n_{n}-1, df_{d}=v_{d}=n_{d}-1.$ ignore 0.8 ignore 1 0.6 $-v_1 = 1, v_2 = 1$ $\mu = \frac{V_d}{V_d - 2} \quad V_d > 2$ 1.6667



F 7

--- $v_1 = 50, v_2 = 100$

1.1111

1.0204

10: Inferences Involving Two Populations 10.5 Inference for Ratio of Two Variances Two Ind. Samples Hypothesis Testing Procedure

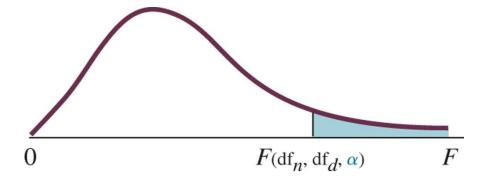
Test Statistic for Equality of Variances

$$F^* = \frac{s_n^2}{s_d^2}$$
 with $df_n = n_n - 1$ and $df_d = n_d - 1$. (10.16)

Will also need critical values.

$$P(F > F(df_n, df_d, \alpha)) = \alpha$$

Table 9
Appendix B
Page 722



 $F(\mathrm{df}_n,\mathrm{df}_d,\alpha)$

10: Inferences Involving Two Pops.

10.5 Inference Ratio of Two Variances

Example: Find F(5,8,0.05). $df_n = n_n - 1$ $df_d = n_d - 1$

$$df_n = n_n - 1 \qquad df_d = n_d - 1$$

Table 9, Appendix B, Page 722.

Degrees of Freedom for Numerator df_n $\alpha = 0.05$

p g	1	2	3	4	<u>5</u>	6	7	8	9	10
for Denominator df_d	161. 18.5 10.1 7.71 6.61	200. 19.0 9.55 6.94 5.79	216. 19.2 9.28 6.59 5.41	225. 19.2 9.12 6.39 5.19	230. 19.3 9.01 6.26 5.05	234. 19.3 8.94 6.16 4.95	237. 19.4 8.89 6.09 4.88	239. 19.4 8.85 6.04 4.82	241. 19.4 8.81 6.00 4.77	242. 19.4 8.79 5.96 4.74
Degrees of Freedom	5.99 5.59 5.32 5.12 4.96	5.14 4.74 4.46 4.26 4.10	4.76 4.35 4.07 3.86 3.71	4.53 4.12 3.84 3.63 3.48	4.39 3.97 3.69 3.48 3.33	4.28 3.87 3.58 3.37 3.22	4.21 3.79 3.50 3.29 3.14	4.15 3.73 3.44 3.23 3.07	4.10 3.68 3.39 3.18 3.02	4.06 3.64 3.35 3.14 2.98
-	•						rigure	s irom Jon	nson & Kul	0y, 2012.

10: Inferences Involving Two Populations 10.5 Inference for Ratio of Two Variances Two Ind. Samples Hypothesis Testing Procedure

One tailed tests: Arrange $H_0 \& H_a$ so H_a is always "greater than"

$$H_0: \sigma_1^2 \ge \sigma_2^2 \text{ VS. } H_a: \sigma_1^2 < \sigma_2^2 \longrightarrow H_0: \sigma_2^2 / \sigma_1^2 \le 1 \text{ VS. } H_a: \sigma_2^2 / \sigma_1^2 > 1 \qquad F^* = \frac{s_2^2}{s_1^2}$$

$$H_0: \sigma_1^2 \le \sigma_2^2 \text{ VS. } H_a: \sigma_1^2 > \sigma_2^2 \longrightarrow H_0: \sigma_1^2 / \sigma_2^2 \le 1 \text{ VS. } H_a: \sigma_1^2 / \sigma_2^2 > 1 \qquad F^* = \frac{s_1^2}{s_2^2}$$

$$\text{Reject } H_0: f^* = \frac{s_1^2}{s_2^2} / \frac{s_2^2}{s_2^2} \longrightarrow \frac{s_1^2}{s_2^2}$$

Two tailed tests: put larger sample variance s^2 in numerator

$$H_0: \sigma_1^2 = \sigma_2^2 \text{ vs. } H_a: \sigma_1^2 \neq \sigma_2^2 \implies H_0: \sigma_n^2 / \sigma_d^2 = 1 \text{ vs. } H_a: \sigma_n^2 / \sigma_d^2 \neq 1$$

$$\sigma_n^2 = \sigma_1^2 \text{ if } s_1^2 > s_2^2 \text{ of } \sigma_n^2 = \sigma_2^2 \text{ if } s_2^2 > s_1^2$$

Reject H_0 if $F^* = s_n^2 / s_d^2 > F(df_n, df_d, \alpha/2)$.

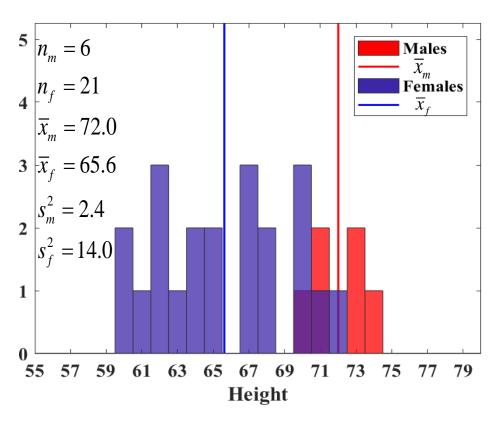
Is variance of female heights greater than that of males? α = .01 27 values

Step 1 Fill in.

Step 2

Step 3

Step 4



Is variance of female heights greater than that of males? $\alpha = .01$ 27 values

Step 1

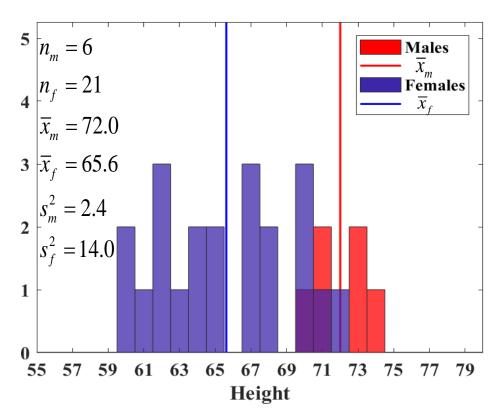
$$H_0: \sigma_f^2 \le \sigma_m^2$$
 vs. $H_a: \sigma_f^2 > \sigma_m^2$

$$H_0:\sigma_f^2/\sigma_m^2 \le 1$$
 vs. $H_a:\sigma_f^2/\sigma_m^2 > 1$

Step 2

Step 3

Step 4



Is variance of female heights greater than that of males? $\alpha = .01$ 27 values

Step 1

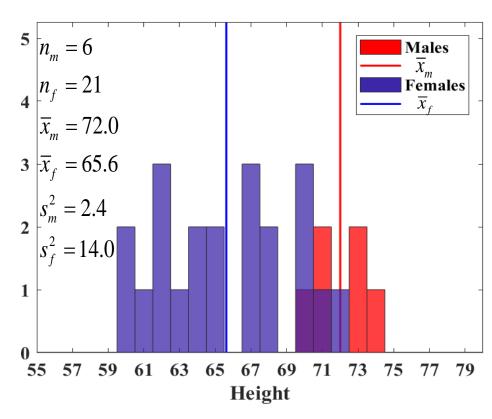
$$H_0: \sigma_f^2 \le \sigma_m^2 \text{ vs. } H_a: \sigma_f^2 > \sigma_m^2$$

 $H_0: \sigma_f^2 / \sigma_m^2 \le 1 \text{ vs. } H_a: \sigma_f^2 / \sigma_m^2 > 1$

Step 2
$$F^* = \frac{S_f^2}{S_m^2}$$
 $df_m = 5$ $df_f = 20$ $\alpha = .01$

Step 3

Step 4



Is variance of female heights greater than that of males? $\alpha = .01$ 27 values

Step 1

$$H_0: \sigma_f^2 \le \sigma_m^2 \text{ vs. } H_a: \sigma_f^2 > \sigma_m^2$$

 $H_0: \sigma_f^2 / \sigma_m^2 \le 1 \text{ vs. } H_a: \sigma_f^2 / \sigma_m^2 > 1$

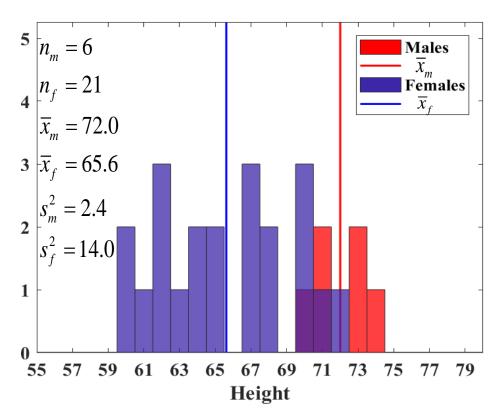
Step 2
$$F^* = \frac{S_f^2}{S_m^2} \qquad df_m = 5$$

$$df_f = 20$$

$$\alpha = .01$$

Step 3

$$F* = 14.0 / 2.4 = 5.83$$



Is variance of female heights greater than that of males? $\alpha = .01$ 27 values

Step 1

$$H_0: \sigma_f^2 \le \sigma_m^2 \text{ vs. } H_a: \sigma_f^2 > \sigma_m^2$$

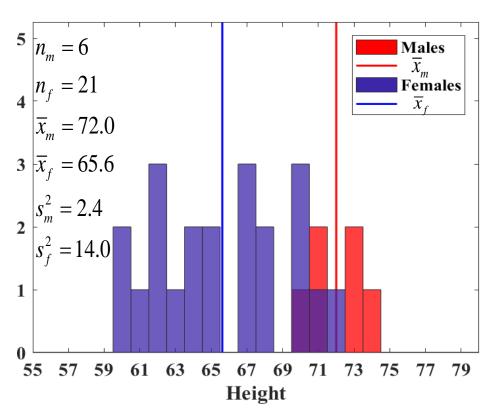
 $H_0: \sigma_f^2 / \sigma_m^2 \le 1 \text{ vs. } H_a: \sigma_f^2 / \sigma_m^2 > 1$

Step 2
$$F^* = \frac{S_f^2}{S_m^2}$$
 $df_m = 5$ $df_f = 20$ $\alpha = .01$

Step 3

Step 4
$$F^* = 14.0 / 2.4 = 5.83$$

 $F(20,5,.01) = 9.55$



Is variance of female heights greater than that of males? $\alpha = .01$ 27 values

Step 1

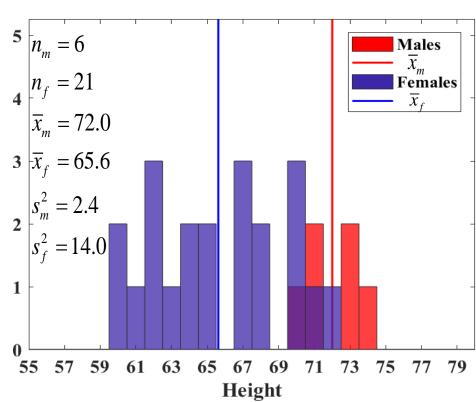
$$H_0: \sigma_f^2 \le \sigma_m^2 \text{ vs. } H_a: \sigma_f^2 > \sigma_m^2$$

 $H_0: \sigma_f^2 / \sigma_m^2 \le 1 \text{ vs. } H_a: \sigma_f^2 / \sigma_m^2 > 1$

Step 2
$$F^* = \frac{S_f^2}{S_m^2}$$
 $df_m = 5$ $df_f = 20$ $\alpha = .01$

Step 4
$$F^* = 14.0 / 2.4 = 5.83$$

$$F(20,5,.01) = 9.55$$



Step 5 Do not reject H_0 since 5.83 < 9.55 and conclude σ_f^2 not > σ_m^2 .

Chapter 10: Inferences Involving Two Populations

Questions?

Homework: Read Chapter 10.4-10.5 WebAssign Chapter 10# 83, 85, 91, 98, 99, 101, 111, 113, 115, 117, 119, 125, 133