Class 20

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

Final Exam

Tuesday Dec 9, 5:45pm - 7:45 pm Cudahy 001

https://bulletin.marquette.edu/policies/examinations-midterm-final-undergraduate/

"Final examinations are held in most subjects and must be held on the days/times, as published on the university calendar website. No final exam may be rescheduled for the convenience of the faculty or students."

"Students who miss a final examination risk receiving a failing grade for the course."

Agenda:

Recap Chapter 9.2 and 9.3

Lecture Chapter 10.1-10.2

Recap Chapter 9.2 and 9.3

9: Inferences Involving One Population 9.2 Inference about the Binomial Probability of Success Hypothesis Testing Procedure

We can perform hypothesis tests on the proportion

$$H_0: p \ge p_0 \text{ vs. } H_a: p < p_0$$

$$H_0$$
: $p \le p_0$ vs. H_a : $p > p_0$

$$H_0$$
: $p = p_0$ vs. H_a : $p \neq p_0$

Test Statistic for a Proportion *p*

$$z^* = \frac{p' - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$

with
$$p' = \frac{x}{n}$$

(9.9)

Step 1:
$$H_0$$
: $p = .61 (\le) \text{ vs. } H_a$: $p > .61$

Step 2:
$$z^* = \frac{p' - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}}$$
 $p' = \frac{x}{n}$

Step 3:
$$z^* = \frac{0.671 - 0.61}{\sqrt{\frac{0.61(1 - 0.61)}{350}}} = 2.34$$

Step 4:
$$z(0.05) = 1.65$$

Step 5: Since 2.34>1.65, Reject H_0 .

$$p' = \frac{235}{350} = 0.671$$

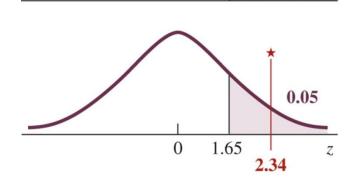


Figure from Johnson & Kuby, 2012.

more than

9: Inferences Involving One Population 9.3 Inference about the Variance and Standard Deviation

We can perform hypothesis tests on the variance.

$$H_0: \sigma^2 \ge \sigma_0^2 \text{ vs. } H_a: \sigma^2 < \sigma_0^2$$

$$H_0$$
: $\sigma^2 \le \sigma_0^2$ vs. H_a : $\sigma^2 > \sigma_0^2$

$$H_0$$
: $\sigma^2 = \sigma_0^2$ vs. H_a : $\sigma^2 \neq \sigma_0^2$

For this hypothesis test, use the χ^2 distribution

- 1. χ^2 is nonnegative
- 2. χ^2 is not symmetric, skewed to right
- 3. χ^2 is distributed to form a family each determined by df=n-1.

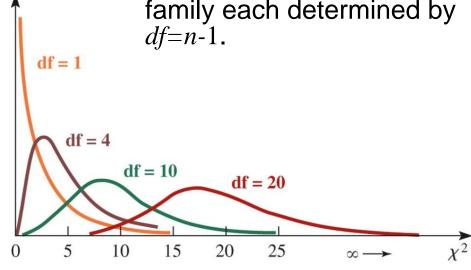


Figure from Johnson & Kuby, 2012.

9: Inferences Involving One Population

9.3 Inference about the Variance and Standard Deviation

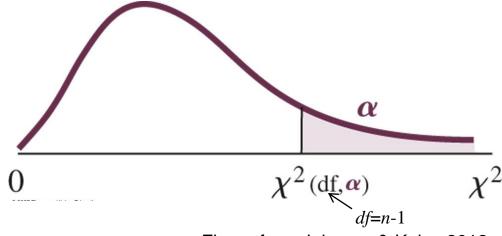
Test Statistic for Variance (and Standard Deviation)

$$\chi^{2} * = \frac{(n-1)s^{2}}{\sigma_{0}^{2}} \underset{\text{hypothesized population variance}}{\longleftarrow} \text{with } df = n-1. \tag{9.10}$$

Will also need critical values.

$$P(\chi^2 > \chi^2(df,\alpha)) = \alpha$$

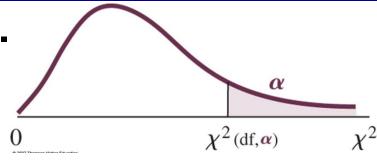
Table 8
Appendix B
Page 721



9: Inferences Involving One Pop.

Example: Find $\chi^2(20,0.05)$.

Table 8, Appendix B, Page 721.



a) A	rea to the Ri	ght							A 2007	Thamana Ulinkas Eskrantian			Λ (**
	0.995	0.99	0.975	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.025	0.01	0.005
b) A	b) Area to the Left (the Cumulative Area) Median												
df	0.005	0.01	0.025	0.05	0.10	0.25	0.50	0.75	0.90	0.95	0.975	0.99	0.995
1 2 3 4 5	0.0000393 0.0100 0.0717 0.207 0.412	0.000157 0.0201 0.115 0.297 0.554	0.000982 0.0506 0.216 0.484 0.831	0.00393 0.103 0.352 0.711 1.15	0.0158 0.211 0.584 1.06 1.61	0.102 0.575 1.21 1.92 2.67	0.455 1.39 2.37 3.36 4.35	1.32 2.77 4.11 5.39 6.63	2.71 4.61 6.25 7.78 9.24	3.84 5.99 7.81 9.49 11.1	5.02 7.38 9.35 11.1 12.8	6.63 9.21 11.3 13.3 15.1	7.88 10.6 12.8 14.9 16.7
6 7 8 9	0.676 0.989 1.34 1.73 2.16	0.872 1.24 1.65 2.09 2.56	1.24 1.69 2.18 2.70 3.25	1.64 2.17 2.73 3.33 3.94	2.20 2.83 3.49 4.17 4.87	3.45 4.25 5.07 5.90 6.74	5.35 6.35 7.34 8.34 9.34	7.84 9.04 10.2 11.4 12.5	10.6 12.0 13.4 14.7 16.0	12.6 14.1 15.5 16.9 18.3	14.4 16.0 17.5 19.0 20.5	16.8 18.5 20.1 21.7 23.2	18.5 20.3 22.0 23.6 25.2
11 12 13 14 15	2.60 3.07 3.57 4.07 4.60	3.05 3.57 4.11 4.66 5.23	3.82 4.40 5.01 5.63 6.26	4.57 5.23 5.89 6.57 7.26	5.58 6.30 7.04 7.79 8.55	7.58 8.44 9.30 10.2 11.0	10.34 11.34 12.34 13.34 14.34	13.7 14.8 16.0 17.1 18.2	17.3 18.5 19.8 21.1 22.3	19.7 21.0 22.4 23.7 25.0	21.9 23.3 24.7 26.1 27.5	24.7 26.2 27.7 29.1 30.6	26.8 28.3 29.8 31.3 32.8
16 17 18 19 20	5.14 5.70 6.26 6.84 7.43	5.81 6.41 7.01 7.63 8.26	6.91 7.56 8.23 8.91 9.59	7.96 8.67 9.39 10.1 10.9	9.31 10.1 10.9 11.7 12.4	11.9 12.8 13.7 14.6 15.5	15.34 16.34 17.34 18.34 19.34	19.4 20.5 21.6 22.7 23.8	23.5 24.8 26.0 27.2 28.4	26.3 27.6 28.9 30.1 31.4	28.8 30.2 31.5 32.9 34.2	32.0 33.4 34.8 36.2 37.6	34.3 35.7 37.2 38.6 40.0

9: Inferences Involving One Population

Example:

A soft-drink bottling company wants to control variability by not allowing the variance to exceed 0.0004. A sample is taken, n=28, $s^2=0.0007$ and $\alpha=0.05$.

Step 1

$$H_0$$
: $\sigma^2 \le 0.0004$ vs. H_a : $\sigma^2 > 0.0004$

$$\sigma_0^2 = 0.0004$$

Step 2
$$\chi^{2*} = \frac{(n-1)s^{2}}{\sigma_{0}^{2}} \longrightarrow df = n-1$$

$$\frac{\text{Step 2}}{\chi^{2*} = \frac{(n-1)s^{2}}{\sigma_{0}^{2}}} \longrightarrow \frac{\text{Step 3}}{\chi^{2*} = \frac{(28-1)(0.0007)}{0.0004}} = 47.25$$

Step 4

$$0.005 < p$$
-value < 0.01 and $\chi^2(27,.05) = 40.1$

Step 5

Reject H_0 since p-value<.05 or because 47.25>40.1.

Rowe, D.B.		0.995	0.99	0.975	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.025	0.01	0.005
Rowe, D.B.	27	11.8	12.9	14.6	16.2	18.1	21.7	26.34	31.5	36.7	40.1	43.2	47.0	49.6

 $\alpha = 0.05$

Chapter 9: Inferences Involving One Population

Questions?

```
Homework: Read Chapter 9.2-9.3
WebAssign
Chapter 9 # 93, 95, 97, 119, 121, 129, 131, 135
```

Lecture Chapter 10

Chapter 10: Inference Involving Two Populations

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

10: Inferences Involving Two Populations 10.1 Dependent and Independent Samples

In this chapter we will have samples from two populations.

The two populations can either be dependent or independent.

Dependent Samples: If samples have related pairs.

Random sample of married couples.

Male Height vs. Female Height ←

Independent Samples: If samples are unrelated.

Random sample of males, Random Sample of females.

Male Height vs. Female Height ←

not same

When we have dependent samples, there is a commonality between the two items in the pair. Quite often before and after.

Population 1:
$$\mu_1 = \mu_c + \mu_{before}$$

Common or baseline mean Population 2: $\mu_2 = \mu_c + \mu_{after}$

Common or baseline mean

But we're interested in the difference in means:

$$\begin{array}{ll} \mu_{\rm l} - \mu_{\rm 2} &= (\mu_{\rm c} + \mu_{\rm before}) - (\mu_{\rm c} + \mu_{\rm after}) \\ &= \mu_{\rm before} - \mu_{\rm after} \end{array}$$

We form a paired difference from the data

Paired Difference

$$d = x_1 - x_2 (10.1)$$

This means that we are subtracting the sample value from

population 2 from the sample value from population 1.

Imagine that we have paired data $(x_{1,1}, x_{2,1}), ..., (x_{1,n}, x_{2,n})$ $x_{j,i}$, population j, observation i where j=1,2 i=1,...,n.

We form a paired difference from the data: $d_i = x_{1,i} - x_{2,i}$ $d_1 = x_{1,1} - x_{2,1}, \ d_2 = x_{1,2} - x_{2,2}, ..., \ d_n = x_{1,n} - x_{2,n}$

When paired observations are randomly selected from normal populations, the paired difference, $d_i = x_{1,i} - x_{2,i}$ will be approximately normally distributed about a mean μ_d with a standard deviation σ_d .

Is actually exactly normally distributed if the populations are (dependent) normally distributed.

With the d_i 's being sampled from populations

with a mean of μ_d and a standard deviation of σ_d , then

$$\overline{d} = \frac{1}{n} \sum_{i=1}^{n} d_i$$
 is approximately normally distributed (recall CLT)

with a mean $\mu_{\bar{d}} = \mu_d$, and standard deviation $\sigma_{\bar{d}} = \frac{\sigma_d}{\sqrt{n}}$.

This would allow us to form a z statistic for the mean of

differences \bar{d} , $z = \frac{\bar{d} - \mu_d}{\sigma_d / \sqrt{n}}$ with a standard normal distribution. We can then look up probabilities in the table,

find critical values $z(\alpha/2)$, construct confidence intervals

and test hypotheses using
$$z^* = \frac{\overline{d} - \mu_{0d}}{\sigma_d / \sqrt{n}}$$
 .

$$\bar{d} \pm z(\alpha/2) \frac{\sigma_d}{\sqrt{n}}$$

However, as in Inferences for One Population, we never

know the true value of σ_d . So we estimate it with sample

standard deviation
$$s_d$$
. This changes $z = \frac{d - \mu_d}{\sigma_d / \sqrt{n}}$

standard deviation s_d . This changes $z = \frac{\overline{d} - \mu_d}{\sigma_d / \sqrt{n}}$ to $t = \frac{\overline{d} - \mu_d}{s_s / \sqrt{n}}$ and the distribution from standard normal

to Student t with
$$df=n-1$$
 where $s_d^2 = \frac{1}{n-1} \sum_{i=1}^n (d_i - \overline{d})^2$.

10: Inferences Involving Two Populations 10.2 Inference for Mean Difference Two Dependent Samples Confidence Interval Procedure

With σ_d unknown, a 1- α confidence interval for μ_d is:

Confidence Interval for Mean Difference (Dependent Samples)

$$\bar{d} - t(df, \alpha/2) \frac{s_d}{\sqrt{n}}$$
 to $\bar{d} + t(df, \alpha/2) \frac{s_d}{\sqrt{n}}$ where $df=n-1$ (10.2)

$$\overline{d} = \frac{1}{n} \sum_{i=1}^{n} d_i$$
 (10.3) $s_d^2 = \frac{1}{n-1} \sum_{i=1}^{n} (d_i - \overline{d})^2$ (10.4)

Car	1	2	3	4	5	6
Brand A	125	64	94	38	90	106
Brand B	133	65	103	37	102	115

Example:

Construct a 95% CI for mean difference in Brand B – A tire wear.

$$d_i$$
's: 8, 1, 9, -1, 12, 9
 $n = 6$ $df = 5$ $t(df, \alpha/2) = \alpha = 0.05$
 $s_d = \bar{d} \pm t(df, \alpha/2) \frac{s_d}{\sqrt{n}} \longrightarrow$

$$\overline{d} = \frac{1}{n} \sum_{i=1}^{n} d_i$$

$$s_d^2 = \frac{1}{n-1} \sum_{i=1}^{n} (d_i - \overline{d})^2$$

Car	1	2	3	4	5	6
Brand A	125	64	94	38	90	106
Brand B	133	65	103	37	102	115

Example:

Construct a 95% CI for mean difference in Brand B – A tire wear.

$$d_i$$
's: 8, 1, 9, -1, 12, 9
 $n = 6$ $df = 5$ $t(df, \alpha/2) = 2.57$
 $\bar{d} = 6.3$ $\alpha = 0.05$
 $s_d = 5.1$ $\bar{d} \pm t(df, \alpha/2) \frac{s_d}{\sqrt{n}} \longrightarrow (0.090, 11.7)$

$$\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_{i}$$

$$s_{d}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (d_{i} - \bar{d})^{2}$$

10: Inferences Involving Two Populations 10.2 Inference for Mean Difference Two Dependent Samples Hypothesis Testing Procedure

We can test for differences in the population means:

$$H_0: \mu_1 \ge \mu_2 \text{ vs. } H_a: \mu_1 < \mu_2 \longrightarrow H_0: \mu_1 - \mu_2 \ge 0 \text{ vs. } H_a: \mu_1 - \mu_2 < 0$$
 $H_0: \mu_1 \le \mu_2 \text{ vs. } H_a: \mu_1 > \mu_2 \longrightarrow H_0: \mu_1 - \mu_2 \le 0 \text{ vs. } H_a: \mu_1 - \mu_2 > 0$
 $H_0: \mu_1 = \mu_2 \text{ vs. } H_a: \mu_1 \ne \mu_2 \longrightarrow H_0: \mu_1 - \mu_2 = 0 \text{ vs. } H_a: \mu_1 - \mu_2 \ne 0$

10: Inferences Involving Two Populations 10.2 Inference for Mean Difference Two Dependent Samples Hypothesis Testing Procedure

We can test for differences in the population means:

$$\begin{array}{lll} H_0: \mu_1 \!\!\geq\!\! \mu_2 \text{ VS. } H_a: \mu_1 \!\!<\!\! \mu_2 & \to & H_0: \mu_1 \!\!-\!\! \mu_2 \!\!\geq\!\! 0 \text{ VS. } H_a: \mu_1 \!\!-\!\! \mu_2 \!\!<\!\! 0 \\ H_0: \mu_1 \!\!\leq\!\! \mu_2 \text{ VS. } H_a: \mu_1 \!\!>\!\! \mu_2 & \to & H_0: \mu_1 \!\!-\!\! \mu_2 \!\!\leq\!\! 0 \text{ VS. } H_a: \mu_1 \!\!-\!\! \mu_2 \!\!>\!\! 0 \\ H_0: \mu_1 \!\!=\!\! \mu_2 \text{ VS. } H_a: \mu_1 \!\!\neq\!\! \mu_2 & \to & H_0: \mu_1 \!\!-\!\! \mu_2 \!\!=\!\! 0 \text{ VS. } H_a: \mu_1 \!\!-\!\! \mu_2 \!\!\neq\!\! 0 \\ \mu_d \!\!=\!\! \mu_1 \!\!-\!\! \mu_2 & \to & H_0: \mu_d \!\!\geq\!\! 0 \text{ VS. } H_a: \mu_d \!\!<\!\! 0 \\ (\mu_d \!\!=\!\! \mu_{before} \!\!-\! \mu_{after}) & H_0: \mu_d \!\!\leq\!\! 0 \text{ VS. } H_a: \mu_d \!\!>\!\! 0 \\ H_0: \mu_d \!\!=\!\! 0 \text{ VS. } H_a: \mu_d \!\!\neq\!\! 0 \end{array}$$

10: Inferences Involving Two Populations 10.2 Inference for Mean Difference Two Dependent Samples Hypothesis Testing Procedure

With σ_d unknown, the test statistic for μ_d is:

Test Statistic for Mean Difference (Dependent Samples)

$$t^* = \frac{\overline{d} - \mu_{d0}}{s_d / \sqrt{n}}$$
 where $df = n-1$

(10.5)

Go through the same five hypothesis testing steps.

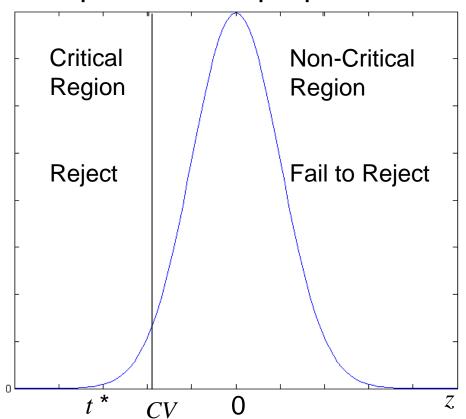
There are three possible hypothesis pairs for the proportion.

$$H_0$$
: $\mu_d \ge \mu_{d0}$ vs. H_a : $\mu_d < \mu_{d0}$

Reject H_0 if less than

$$t^* = \frac{\overline{d} - \mu_{d0}}{s_d / \sqrt{n}} \qquad -t(df, \alpha)$$

data indicates $\mu_d < \mu_{d0}$ because \bar{d} is "a lot" smaller than μ_{d0}



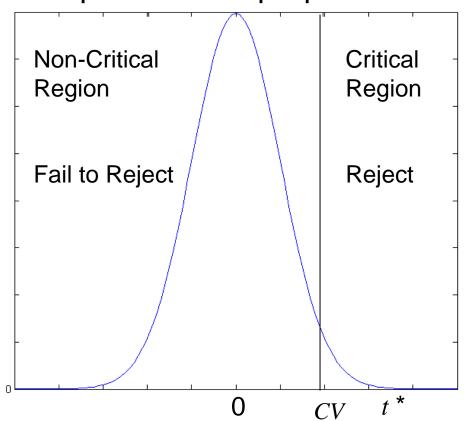
There are three possible hypothesis pairs for the proportion.

$$H_0$$
: $\mu_d \le \mu_{d0}$ vs. H_a : $\mu_d > \mu_{d0}$

Reject H_0 if greater then

$$t^* = \frac{\overline{d} - \mu_{d0}}{s_d / \sqrt{n}} \qquad t(df, \alpha)$$

data indicates $\mu_d > \mu_{d0}$ because \bar{d} is "a lot" smaller than μ_{d0}



There are three possible hypothesis pairs for the proportion.

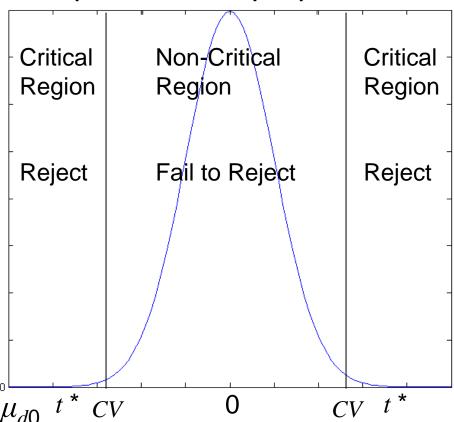
$$H_0$$
: $\mu_d = \mu_{d0}$ vs. H_a : $\mu_d \neq \mu_{d0}$

Reject H_0 if less than

$$t^* = \frac{\overline{d} - \mu_{d0}}{s_d / \sqrt{n}} - t(df, \alpha / 2)$$

or if _ is greater than

$$t^* = \frac{\overline{d} - \mu_{d0}}{s_d / \sqrt{n}} \quad t(df, \alpha / 2)$$
data indicates $\mu_d \neq \mu_{d0}, \overline{d}$ far from μ_{d0} t^* cv



n = 6 8, 1, 9, -1, 12, 9

Car	1	2	3	4	5	6
Brand A	125	64	94	38	90	106
Brand B	133	65	103	37	102	115

Example:

Test mean difference of Brand B minus Brand A is zero.

Step 1

Step 5

Step 2

Step 3

Step 4

n = 6 8, 1, 9, -1, 12, 9

Car	1	2	3	4	5	6
Brand A	125	64	94	38	90	106
Brand B	133	65	103	37	102	115

Example:

Test mean difference of Brand B minus Brand A is zero.

Step 1 H_0 : $\mu_d = 0$ vs. H_a : $\mu_d \neq 0$

Step 5

Step 2

Step 3

Step 4

n = 6 8, 1, 9, -1, 12, 9

Car	1	2	3	4	5	6
Brand A	125	64	94	38	90	106
Brand B	133	65	103	37	102	115

Example:

Test mean difference of Brand B minus Brand A is zero.

Step 1
$$H_0$$
: $\mu_d = 0$ vs. H_a : $\mu_d \neq 0$

Step 5

Step 2

$$df = 5 \qquad t^* = \frac{\overline{d} - \mu_{d0}}{s_d / \sqrt{n}}$$

$$\alpha = .05$$

Step 3

Step 4

n = 6 8, 1, 9, -1, 12, 9

Car	1	2	3	4	5	6
Brand A	125	64	94	38	90	106
Brand B	133	65	103	37	102	115

Example:

Test mean difference of Brand B minus Brand A is zero.

Step 1
$$H_0$$
: $\mu_d = 0$ vs. H_a : $\mu_d \neq 0$

Step 5

Step 2

$$df = 5 \qquad t^* = \frac{\overline{d} - \mu_{d0}}{s_d / \sqrt{n}}$$

$$\alpha = .05$$

Step 3
$$\overline{d} = 6.3$$
 $s_d = 5.1$ $t^* = \frac{6.3 - 0}{5.1/\sqrt{6}} = 3.03$

Step 4

n = 6 8, 1, 9, -1, 12, 9

Car	1	2	3	4	5	6
Brand A	125	64	94	38	90	106
Brand B	133	65	103	37	102	115

Example:

Test mean difference of Brand B minus Brand A is zero.

Step 1
$$H_0$$
: $\mu_d = 0$ vs. H_a : $\mu_d \neq 0$

Step 5

Step 2

$$df = 5 \qquad t^* = \frac{\overline{d} - \mu_{d0}}{s_d / \sqrt{n}}$$

$$\alpha = .05$$

Step 3
$$\overline{d} = 6.3$$

 $s_d = 5.1$ $t^* = \frac{6.3 - 0}{5.1/\sqrt{6}} = 3.03$

Step 4
$$t(df, \alpha/2) = 2.57$$

n = 6 8, 1, 9, -1, 12, 9

Car	1	2	3	4	5	6
Brand A	125	64	94	38	90	106
Brand B	133	65	103	37	102	115

Example:

Test mean difference of Brand B minus Brand A is zero.

Step 1
$$H_0$$
: μ_d =0 vs. H_a : μ_d \neq 0

Step 2

$$df = 5 \qquad t^* = \frac{\overline{d} - \mu_{d0}}{s_d / \sqrt{n}}$$

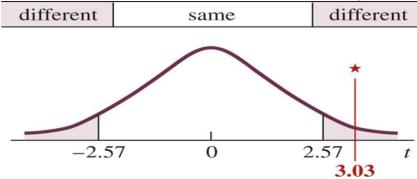
$$\alpha = .05$$

Step 3
$$\bar{d} = 6.3$$

 $s_d = 5.1$ $t^* = \frac{6.3 - 0}{5.1/\sqrt{6}} = 3.03$

Step 4
$$t(df, \alpha/2) = 2.57$$

Step 5 Since $t^* > t(df, \alpha/2)$, reject H_0



Conclusion: Significant difference in tread wear at .05 level.

Chapter 10: Inferences Involving Two Populations

Questions?

Homework: Read Chapter 10.1-10.2

WebAssign

Chapter 10 #13, 15, 23, 25, 29, 31, 35