Class 15

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

Agenda:

Review Chapters 6-8 (Exam 2 Chapters)

Just the highlights!

Total area=1.

6: Normal Probability Distributions

6.1 Normal Probability Distributions

The mathematical formula for the normal distribution is (p 269):

f(x)

$$f(x) = \frac{e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}}{\sigma\sqrt{2\pi}}$$

where

e = 2.718281828459046...

 π = 3.141592653589793...

 μ = population mean

 σ = population std. deviation

$$-\infty < x, \mu < +\infty$$

 $0 < \sigma$

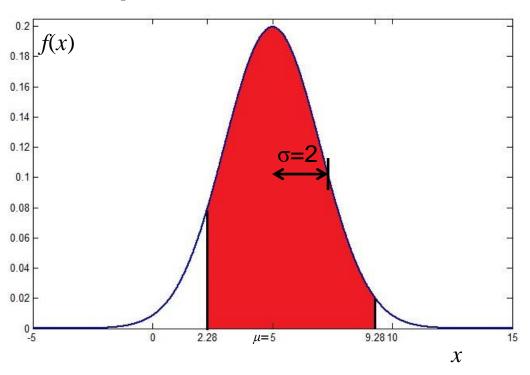
 μ

We will not use this formula.

Figure from Johnson & Kuby, 2012.

6: Normal Probability Distributions 6.2 The Standard Normal Probability Distributions

Example: Here is a normal distribution with $\mu = 5$ and $\sigma^2 = 4$.

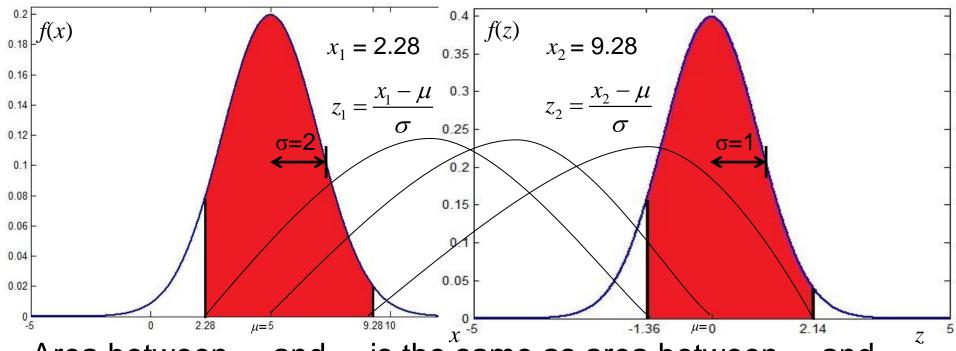


Let's say we want to know the red area under the normal distribution between $x_1 = 2.28$ and $x_2 = 9.28$.

What is the area under the normal distribution between these two values?

6: Normal Probability Distributions 6.2 The Standard Normal Probability Distributions $z = \frac{x - \mu}{\sigma}$

Example: Here is a normal distribution with $\mu = 5$ and $\sigma^2 = 4$.



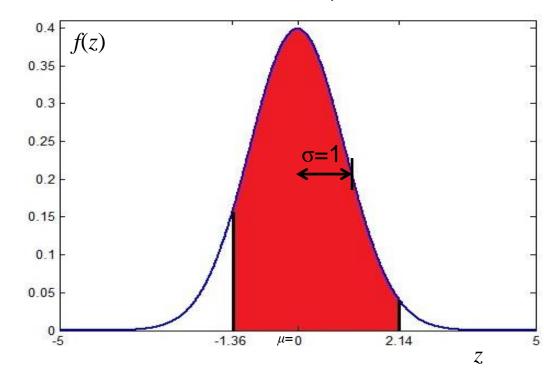
Area between x_1 and x_2 is the same as area between z_1 and z_2 . We find $z_1 = (x_1 - \mu)/\sigma = -1.36$ and $z_2 = (x_2 - \mu)/\sigma = 2.14$?

6.2 The Standard Normal Probability Distributions

Now we can simply look up the *z* areas in a table.

Appendix B Table 3 Page 716.

Standard normal curve $\mu = 0$ and $\sigma^2 = 1$.

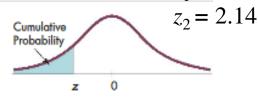


 $z_1 = -1.36$

Appendix B TABLE 3 Table 3 Page 716

Cumulative Areas of the Standard Normal Distribution

The entries in this table are the cumulative probabilities for the standard normal distribution z (that is, the normal distribution with mean 0 and standard deviation 1). The shaded area under the curve of the standard normal distribution represents the cumulative probability to the left of a z-value in the left-hand tail.



Second Decimal Place in z

	z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
	-5.0 -4.5 -4.0	0.0000003 0.000003 0.00003	0.00003	0.00003	0.00003	0.00003	0.00003	0.00002	0.00002	0.00002	0.00002
z ui eo	-3.9	0.00005	0.00005	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00003	0.00003
	-3.8	0.00007	0.00007	0.00007	0.00006	0.00006	0.00006	0.00006	0.00005	0.00005	0.00005
	-3.7	0.00011	0.00010	0.00010	0.00010	0.00009	0.00009	0.00008	0.00008	0.00008	0.00008
	-3.6	0.0002	0.0002	0.0002	0.00014	0.00014	0.00013	0.00013	0.00012	0.00012	0.00011
	-3.5	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002
First Decimal Place	-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002
	-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004
	-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005
	-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007
	-3.0	0.0014	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010
First D	-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014
	-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019
	-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026
	-2.6	0.0047	0.0045	0.0044	0.0043	0.0042	0.0040	0.0039	0.0038	0.0037	0.0036
	-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048
	-2.4	0.0082	0.0080	0.0078	0.0076	0.0073	0.0071	0.0070	0.0068	0.0066	0.0064
	-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084
	-2.2	0.0139	0.0136	0.0132	0.0129	0.0126	0.0122	0.0119	0.0116	0.0113	0.0110
	-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143
	-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183
	-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233
	-1.8	0.0359	0.0352	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294
	-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367
	-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455
	-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559

Appendix B, Table 3, Page 716

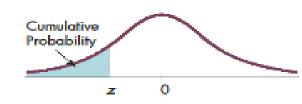
$$z_1 = -1.36$$

 $z_2 = 2.14$

TABLE 3

Cumulative Areas of the Standard Normal Distribution

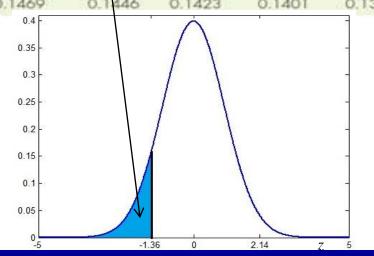
The entries in this table are the cumulative probabilities for the standard normal distribution z (that is, the normal distribution with mean 0 and standard deviation 1). The shaded area under the curve of the standard normal distribution represents the cumulative probability to the left of a z-value in the **left-hand tail**.



Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
-1.4 -1.3 -1.2 -1.1 -1.0	0.1151	0.0793 0.0951 0.1131 0.1335 0.1563	0.0778 0.0934 0.1112 0.1314 0.1539	0.0764 0.0918 0.1094 0.1292 0.1515	0.0749 0.0901 0.1075 0.1271 0.1492	0.0735 0.0885 0.1057 0.1251 0.1469	0.0721 0.0869 0.1038 0.1230 0.1446	0.0708 0.0853 0.1020 0.1210 0.1423	0.0694 0.0838 0.1003 0.1190 0.1401	0.0681 0.0823 0.0985 0.1170 0.1379
						0.4	10.	<u></u>	Į.	<u> </u>

P(z<-1.36)=Area less than -1.36.

We get this from Table 3. Row labeled -1.3 over to column Labeled .06.



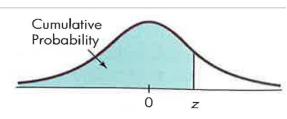
Appendix B, Table 3, Page 717

 $z_1 = -1.36$ $z_2 = 2.14$

TABLE 3

Cumulative Areas of the Standard Normal Distribution (continued)

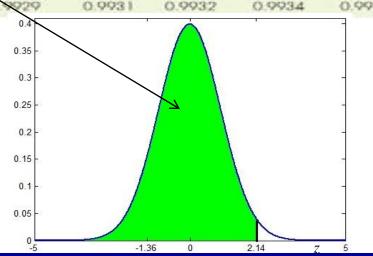
The entries in this table are the cumulative probabilities for the standard normal distribution z (that is, the normal distribution with mean 0 and standard deviation 1). The shaded area under the curve of the standard normal distribution represents the cumulative probability to the left of a z-value in the **left-hand tail**.



Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
2.0 2.1 2.2 2.3 2.4	0.9773 0.9821 0.9861 0.9893 0.9918	0.9778 0.9826 0.9865 0.9896 0.9920	0.9783 0.9830 0.9868 0.9898 0.9922	0.9788 0.9834 0.9871 0.9901 0.9925	0.9838 0.9875 0.9904 0.9927	0.9798 0.9842 0.9878 0.9906 0.9929	0.9803 0.9846 0.9881 0.9909 0.9931	0.9808 0.9850 0.9884 0.9911 0.9932	0.9812 0.9854 0.9887 0.9913 0.9934	0.9817 0.9857 0.9890 0.9916 0.9936
						0.1				33

P(z<2.14)=Area less than 2.14.

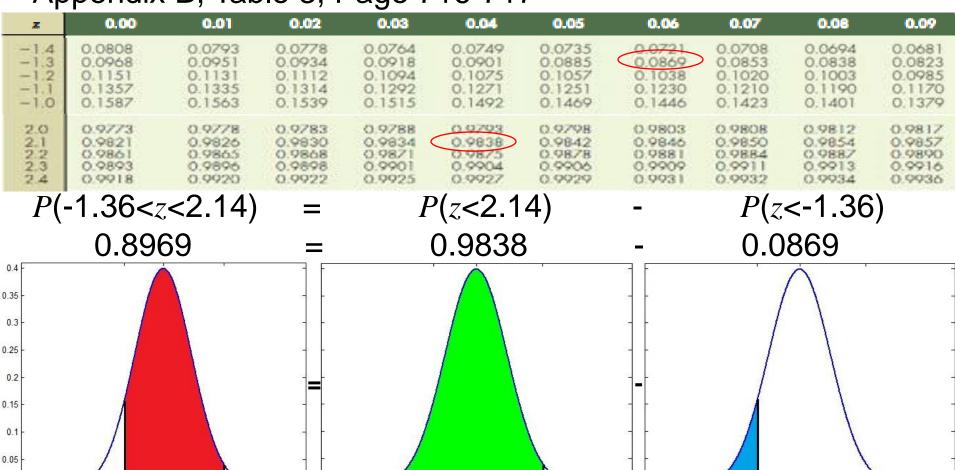
We get this from Table 3. Row labeled 2.1 over to column Labeled .04.



Appendix B, Table 3, Page 716-717

$$z_1 = -1.36$$

 $z_2 = 2.14$

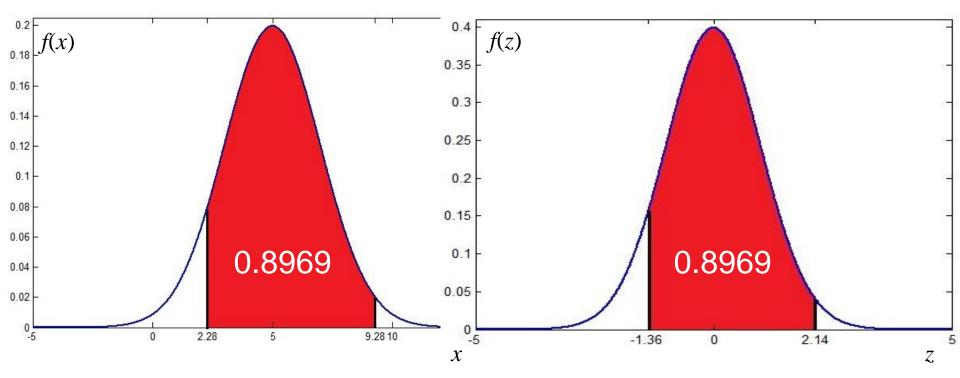


6: Normal Probability Distributions 6.2 The Standard Normal Probability Distributions

$$z_1 = -1.36$$

 $z_2 = 2.14$

Example: Here is a normal distribution with $\mu = 5$ and $\sigma^2 = 4$.



Area between x_1 and x_2 is same as the area between z_1 and z_2 .

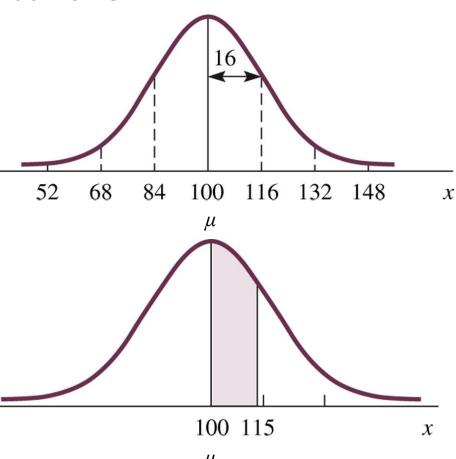
6.3 Applications of Normal Distributions

Example:

Assume that IQ scores are normally distributed with a mean μ of 100 and a standard deviation σ of 16.

If a person is picked at random, what is the probability that his or her IQ is between 100 and 115?

i.e. P(100 < x < 115) ?



Figures from Johnson & Kuby, 2012.

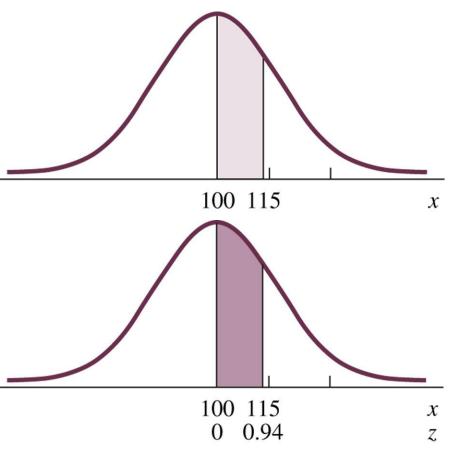
6.3 Applications of Normal Distributions

IQ scores normally distributed μ =100 and σ =16.

$$z = \frac{x - \mu}{\sigma} \qquad \begin{aligned} x_1 &= 100 \\ x_2 &= 115 \end{aligned}$$

$$z_1 = \frac{x_1 - \mu}{\sigma} = \frac{100 - 100}{16} = 0$$

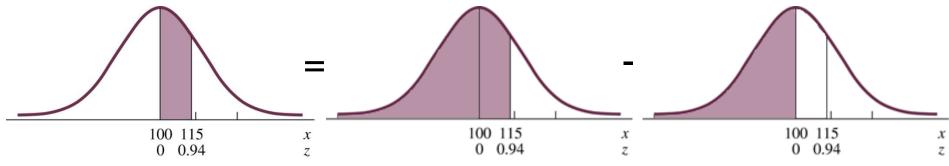
$$z_2 = \frac{x_2 - \mu}{\sigma} = \frac{115 - 100}{16} = 0.94$$



Figures from Johnson & Kuby, 2012.

6.3 Applications of Normal Distributions

Now we can use the table.



$$P(0 < z < 0.94) = P(z < 0.94) - P(z < 0)$$

= 0.8264 - .5
= 0.3264

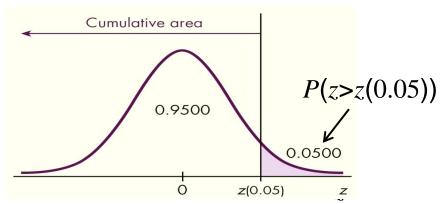
Figures from Johnson & Kuby, 2012.

										0.09
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389

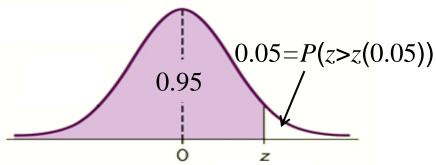
6.4 Notation

Example:

Let α =0.05. Let's find z(0.05). P(z>z(0.05))=0.05.



Same as finding P(z < z(0.05)) = 1-0.05.



Figures from Johnson & Kuby, 2012.

6.4 Notation

Example:

Same as finding P(z < z(0.05)) = 0.95.

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0	0.5000	0.5040	0.5080	0.5120	0.5160	0.5199	0.5239	0.5279	0.5319	0.5359
0.1	0.5398	0.5438	0.5478	0.5517	0.5557	0.5596	0.5636	0.5675	0.5714	0.5754
0.2	0.5793	0.5832	0.5871	0.5910	0.5948	0.5987	0.6026	0.6064	0.6103	0.6141
0.3	0.6179	0.6217	0.6255	0.6293	0.6331	0.6368	0.6406	0.6443	0.6480	0.6517
0.4	0.6554	0.6591	0.6628	0.6664	0.6700	0.6736	0.6772	0.6808	0.6844	0.6879
2.5	0.6915	0.6950	0.6985	0.7019	0.7054	0.7088	0.7123	0.7157	0.7190	0.7224
	0.7258	0.7291	0.7324	0.7357	0.7389	0.7422	0.7454	0.7486	0.7518	0.7549
	0.7580	0.7612	0.7642	0.7673	0.7704	0.7734	0.7764	0.7794	0.7823	0.7852
	0.7681	0.7910	0.7939	0.7967	0.7996	0.9023	0.8051	0.8079	0.8106	0.8133
	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389
5.67.8.9	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9430	0.9441
	0.9452	0.9463	0.9474	0.9485	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9700	0.9706
	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9762	0.9767
0 1 2 3 4	0.9773	0.9778	0.9783	0.9788	0.9793	0.9298	0.9803	0.9808	0.9812	0.9817
	0.9821	0.9826	0.9630	0.9834	0.9838	0.9842	0.9846	0.9850	0.9854	0.9857
	0.9861	0.9865	0.9868	0.9871	0.9875	0.9878	0.9881	0.9884	0.9887	0.9890
	0.9893	0.9896	0.9898	0.9901	0.9904	0.9906	0.9909	0.9911	0.9913	0.9916
	0.9918	0.9990	0.9922	0.9925	0.9927	0.9929	0.9931	0.9932	0.9934	0.9936

7.2 The Sampling Distribution of Sample Means

When we take a random sample $x_1, ..., x_n$ from a population,

one of the things that we do is compute the sample mean \bar{x} .

The value of \bar{x} is not μ . Each time we take a random sample

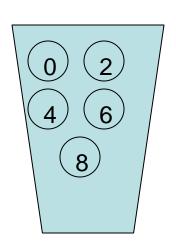
of size n (with replacement), we get a different set of values

 x_1, \ldots, x_n and a different value for \overline{x} .

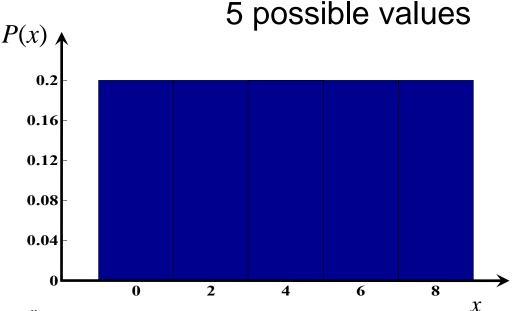
There is a distribution of possible \bar{x} 's.

7.2 The Sampling Distribution of Sample Means

N=5 balls in bucket, select n=1 with replacement. Population data values: 0, 2, 4, 6, 8.



X	P(x)
0	1/5
2	1/5
4	1/5
6	1/5
8	1/5



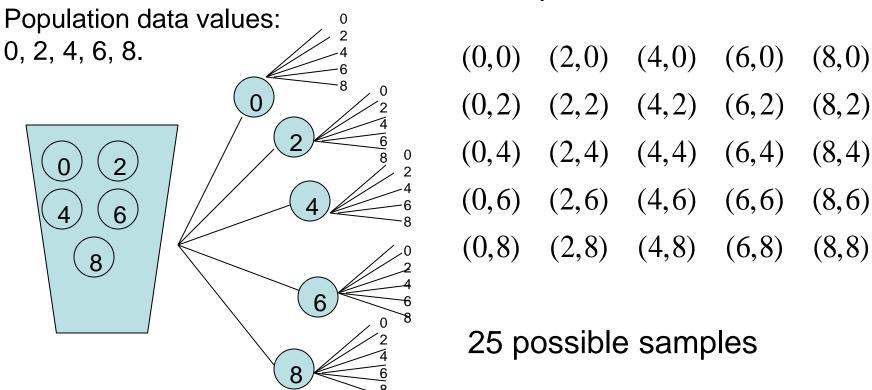
$$\mu = \sum_{i=1}^{n} [x_i P(x_i)] = 4 \qquad \sigma^2 = \sum_{i=1}^{n} [(x_i - \mu)^2 P(x_i)] = 8 \qquad \sigma = \sqrt{8} = 2\sqrt{2}$$

$$]=8 \qquad \sigma=\sqrt{8}=2\sqrt{2}$$

7.2 The Sampling Distribution of Sample Means

Example:

N=5 balls in bucket, select n=2 with replacement.



(0,2) (2,2) (4,2) (6,2) (8,2)samples.

25 possible

(0,6) (2,6) (4,6) (6,6) (8,6)(0.8)(2,8) (4,8) (6,8) (8,8)

(0,0) (2,0) (4,0) (6,0) (8,0)

7.2 The Sampling Distribution of Sample Means (0,4) (2,4) (4,4) (6,4) (8,4)

Example: N=5, values: 0, 2, 4, 6, 8, n=2 (with replacement).

Prob. of each samples mean = 1/25 = 0.04

 $\overline{x} = 0$, one time

$$P(\overline{x}=0)=1/25$$

 $\overline{x} = 1$, two times

 $P(\bar{x} = 1) = 2 / 25$

 $\overline{x} = 2$, three times

$$P(\overline{x}=2)=3/25$$

 $\bar{x} = 3$, four times

$$P(\overline{x}=3)=4/25$$

 $\overline{x} = 4$, five times

$$P(\overline{x}=4)=5/25$$

 $\overline{x} = 5$, four times

$$P(\bar{x} = 5) = 4 / 25$$

2 3 4 5 6

0 1 2 3 4

1 2 3 4 5

$$\overline{x} = 6$$
, three times

$$P(\overline{x}=6)=3/25$$

3 4 5 6

$$\overline{x} = 7$$
, two times

$$P(\overline{x} = 7) = 2 / 25$$

$$\overline{x} = 8$$
, one time

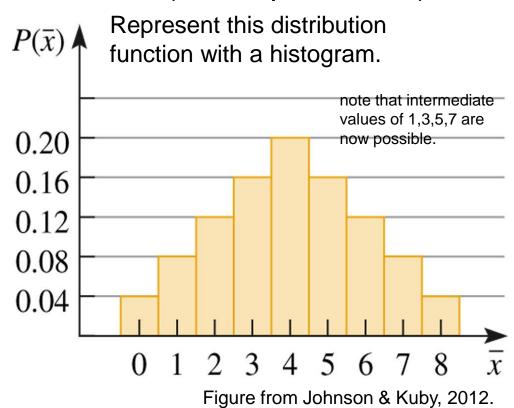
$$P(\overline{x}=8)=1/25$$

7.2 The Sampling Distribution of Sample Means

Example: N=5, values: 0, 2, 4, 6, 8, n=2 (with replacement).

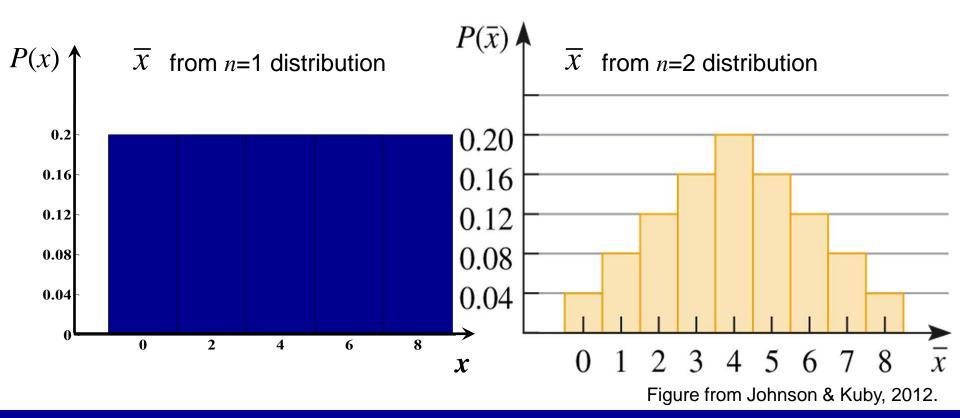
$$P(\bar{x} = 0) = 1/25$$

 $P(\bar{x} = 1) = 2/25$
 $P(\bar{x} = 2) = 3/25$
 $P(\bar{x} = 3) = 4/25$
 $P(\bar{x} = 4) = 5/25$
 $P(\bar{x} = 5) = 4/25$
 $P(\bar{x} = 6) = 3/25$
 $P(\bar{x} = 7) = 2/25$
 $P(\bar{x} = 8) = 1/25$



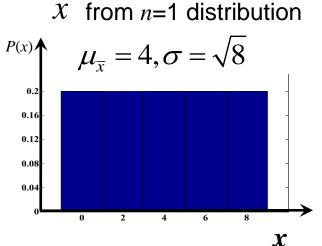
7.2 The Sampling Distribution of Sample Means

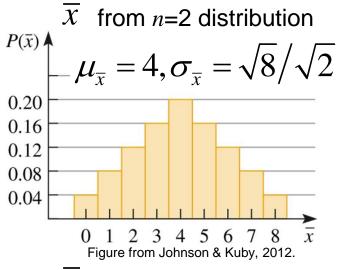
Example: N=5, values: 0, 2, 4, 6, 8, n=1 or 2 (with replacement).

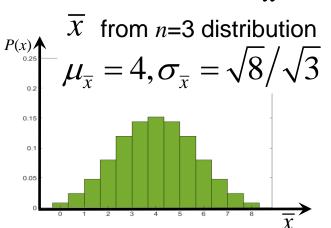


- 1. A mean μ_x equal to μ
- 2. A standard deviation σ_{τ} equal to

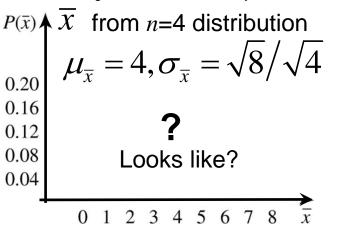
7.2 The Sampling Distribution of Sample Means







Rowe, D.B.



n large?
$$\overrightarrow{\mu_{\overline{x}}} = 4$$

$$\sigma_{\overline{x}} = \sqrt{8} / \sqrt{n}$$
Looks like?

7.2 The Sampling Distribution of Sample Means

Sample distribution of sample means (SDSM):

If random samples of size n, are taken from ANY population with mean μ and standard deviation σ , then the SDSM has:

- 1. A mean $\mu_{\bar{x}}$ equal to μ
- 2. A standard deviation $\sigma_{\bar{x}}$ equal to \sqrt{n}

Central Limit Theorem (CLT): The sampling distribution of sample means will more closely resemble the normal distribution as the sample size n increases.

7.2 The Sampling Distribution of Sample Means

The CLT: Assume that we have a population (arbitrary distribution) with mean μ and standard deviation σ .

If we take random samples of size n (with replacement), then for "large" n, the distribution of the sample means the \overline{x} 's is approximately normally distributed with

$$\mu_{\bar{x}} = \mu, \qquad \sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

where in general $n \ge 30$ is sufficiently "large," but can be as small as 15 or as big as 50 depending upon the shape of distribution!

7.3 Application of the Sampling Distribution of Sample Means

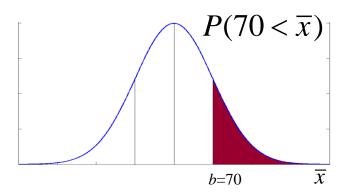
Example:

What is probability that sample mean \bar{x} from a random sample of n=15 heights is greater than 70" when $\mu = 67.5$ and $\sigma = 3.7$?

7.3 Application of the Sampling Distribution of Sample Means

Example:

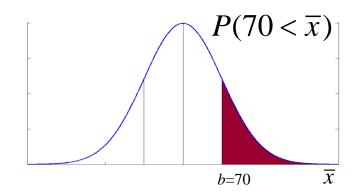
What is probability that sample mean \bar{x} from a random sample of n=15 heights is greater than 70" when $\mu = 67.5$ and $\sigma = 3.7$?



7.3 Application of the Sampling Distribution of Sample Means

Example:

What is probability that sample mean \bar{x} from a random sample of n=15 heights is greater than 70" when $\mu = 67.5$ and $\sigma = 3.7$?



 $P(70 < \overline{x})$ we first convert to z scores

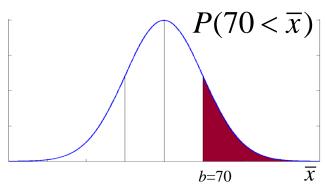
$$z = \frac{\overline{x} - \mu_{\overline{x}}}{\sigma_{\overline{x}}}$$

$$d = \frac{b - \mu_{\overline{x}}}{\sigma_{\overline{x}}}$$

7.3 Application of the Sampling Distribution of Sample Means

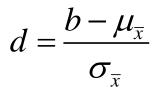
Example:

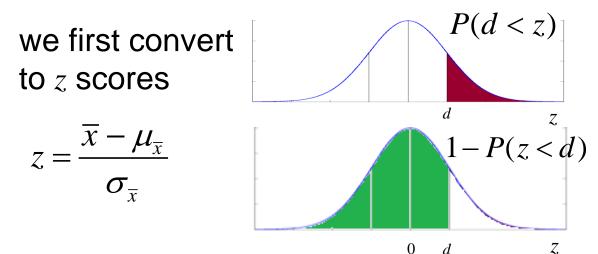
What is probability that sample mean \bar{x} from a random sample of n=15 heights is greater than 70" when $\mu=67.5$ and $\sigma=3.7$?



$$z = \frac{\overline{x} - \mu_{\overline{x}}}{\sigma_{\overline{x}}}$$

to z scores

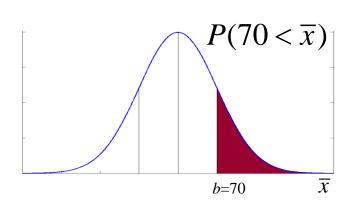




7.3 Application of the Sampling Distribution of Sample Means

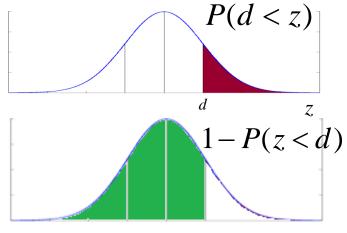
Example:

What is probability that sample mean \bar{x} from a random sample of n=15 heights is greater than 70" when $\mu = 67.0$ and $\sigma = 4.3$?



 $P(70 < \overline{x})$ we first convert to z scores

$$z = \frac{\overline{x} - \mu_{\overline{x}}}{\sigma_{\overline{x}}}$$



where
$$d = \frac{b - \mu_{\overline{x}}}{\sigma_{\overline{x}}} = \frac{70 - 67.0}{4.3 / \sqrt{15}} = 2.70$$
, then use the table in book. $1 - P(z < 2.70) = 1 - .9965 = 0.0035$

8.1 The Nature of Estimation

Point estimate for a parameter: A single number ..., to estimate a parameter ... usually the .. sample statistic.

i.e. \overline{x} is a point estimate for μ

Interval estimate: An interval bounded by two values and used to estimate the value of a population parameter.

i.e. $\bar{x} \pm (\text{some amount})$ is an interval estimate for μ .

point estimate ± some amount

8.1 The Nature of Estimation

Significance Level: Probability parameter outside interval, α .

$$P(\mu \text{ not in } \overline{x} \pm \text{some amount}) = \alpha$$

Level of Confidence 1- α :

$$P(\overline{x} - \text{some amount} < \mu < \overline{x} + \text{some amount}) = 1 - \alpha$$

Confidence Interval:

point estimator \pm some amount that depends on confidence level

8.2 Estimation of Mean μ (σ Known)

What this implies is that

$$z = \frac{\overline{x} - \mu_{\overline{x}}}{\sigma_{\overline{x}}}$$

By SDSM

$$\mu_{\overline{x}} = \mu$$
,

$$\sigma_{\bar{x}} = \frac{\sigma}{\sqrt{n}}$$

has an approximate standard normal distribution!

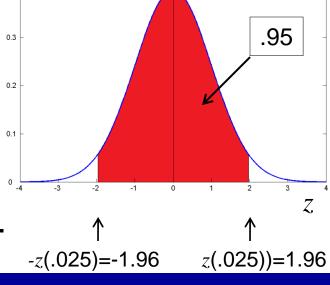
$$P(-1.96 < z < 1.96) = 0.95$$

$$\alpha$$
=.05

Or more generally,

$$P(-z(\alpha/2) < z < z(\alpha/2)) = 1 - \alpha$$

 $z(\alpha/2)$ called the confidence coefficient.



8.2 Estimation of Mean μ (σ Known)

$$P(-z(\alpha/2) < z < z(\alpha/2)) = 1 - \alpha$$

With some algebra, we saw that

$$-z(\alpha/2) < z$$

$$-z(\alpha/2) < \frac{\overline{x} - \mu_{\overline{x}}}{\sigma_{\overline{x}}}$$

$$-z(\alpha/2)\frac{\sigma}{\sqrt{n}} < \overline{x} - \mu$$

$$-z(\alpha/2)\frac{\sigma}{\sqrt{n}}-\overline{x} < -\mu$$

$$\overline{x} + z(\alpha/2) \frac{\sigma}{\sqrt{n}} > \mu$$

and
$$z(\alpha/2)$$
 $> z$ $z(\alpha/2)$ $> \frac{\overline{x} - \mu_{\overline{x}}}{\sigma_{\overline{x}}}$

$$z(\alpha/2)\frac{\sigma}{\sqrt{n}} > \overline{x} - \mu$$

$$z(\alpha/2)\frac{\sigma}{\sqrt{n}} - \overline{x} > -\mu$$

$$\overline{x} - z(\alpha/2) \frac{\sigma}{\sqrt{n}} < \mu$$

8.2 Estimation of Mean μ (σ Known)

Thus, a $(1-\alpha)\times 100\%$ confidence interval for μ is

$$\overline{x} \pm z(\alpha/2) \frac{\sigma}{\sqrt{n}}$$

which if α =0.05, a 95% confidence interval for μ is

$$\overline{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}$$
.

$$z(.025))=1.96$$

Confidence Interval for Mean:

$$\overline{x} - z(\alpha/2) \frac{\sigma}{\sqrt{n}}$$
 to $\overline{x} + z(\alpha/2) \frac{\sigma}{\sqrt{n}}$ (8.1)

8.2 Estimation of Mean μ (σ Known)

Philosophically, μ is fixed and the interval varies.

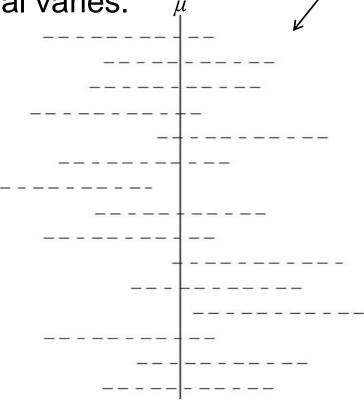
If we take a sample of data, $x_1,...,x_n$ and determine a confidence interval from it, we get.

 $\overline{x} \pm z(\alpha/2)\frac{\sigma}{\sqrt{n}}$

If we had a different sample of data, $y_1,...,y_n$ we would have determined a different confidence interval.

$$\overline{y} \pm z(\alpha/2)\frac{\sigma}{\sqrt{n}}$$

each sample a different interval of same width



8.2 Estimation of Mean μ (σ Known)

We never truly know if our CI from our sample of data will

contain the true population mean μ .

But we do know that there is a $(1-\alpha)\times 100\%$ chance

that a confidence interval from a sample of data will contain μ .

8.4 The Nature of Hypothesis Testing

Example 1: Friend's Party.

 H_0 : "The party will be a dud"

VS.

 H_a : "The Party will be a great time"

Example 2: Math 1700 Students Height

 H_0 : The mean height of Math 1700 students is 69", μ = 69".

VS.

 H_a : The mean height of Math 1700 students is not 69", $\mu \neq$ 69".

8.4 The Nature of Hypothesis Testing

Example 1: Friend's Party

 H_0 : "The party will be a dud"

VS.

 H_a : "The Party will be a great time"

If do not go to party and it's great, we made an error in judgment.

If go to party and it's a dud, we made in error in judgment.

_	Four outo	comes from a hyp	oothesis test.
		Party Great	Party a dud.
,,	We go.	Correct Decision	Type II Error
,	We do not go.	Type I Error	Correct Decision

8.4 The Nature of Hypothesis Testing

Example 2: Math 1700 Height

$$H_0$$
: μ = 69"

VS.

$$H_a$$
: $\mu \neq 69$ "

If we reject H_0 and it is true, we made in error in judgment.

If we do not reject H_0 and it is false, we have made an error in judgment.

Four outcomes from a hypothesis test.

	omee mem a my	
	$\mu = 69$	<i>μ</i> ≠ 69
Fail to reject H_0 .	Correct Decision	Type II Error
Reject H_0 .	Type I Error	Correct Decision

8.4 The Nature of Hypothesis Testing

Type I Error: ...true null hypothesis H_0 is rejected.

Level of Significance (α): The probability of committing a type I error. (Sometimes α is called the false positive rate.)

Type II Error: ... favor ... null hypothesis that is actually false.

Type II Probability (β) :

The probability of committing a type II error.

	H_0 True	H_0 False
Do Not Reject H_0	Type A Correct Decision (1-α)	Type II Error $\uparrow (\beta)$
Reject H_0	Ψ Type I Error (α)	Type B Correct Decision (1-β)
		(* P)

8.4 The Nature of Hypothesis Testing

We need to determine a measure that will quantify what we should believe.

Test Statistic: A random variable whose value is calculated from the sample data and is used in making the decision "reject H_0 : or "fail to reject H_0 ."

Example: Friend's Party

Fraction of parties that were good.

Example: Math 1700 Heights

Sample mean height.

8.4 The Nature of Hypothesis Testing

HYPOTHESIS TESTING PAIRS

Null Hypothesis	Alternative Hypothesis
 Greater than or equal to (≥) Less than or equal to (≤) Equal to (=) 	Less than (<) Greater than (>) Not equal to (≠)

TABLE 8.6 Common Phrases and Their Negations

H _o : (≥) vs.	H _a : (<)	$H_o: (\leq)$ vs.	H _a : (>)	H_o : (=) vs.	<i>H</i> _a : (≠)
At least	Less than	At most No more than Not greater than	More than	ls	ls not
No less than	Less than		More than	Not different from	Different from
Not less than	Less than		Greater than	Same as	Not same as

Figure from Johnson & Kuby, 2012.

8.4 Hypothesis Test of Mean (σ Known): Probability Approach

Null Hypothesis	Alternative Hypothesis
 Greater than or equal to (≥) Less than or equal to (≤) Equal to (=) 	Less than (<) Greater than (>) Not equal to (≠)

8.4 Hypothesis Test of Mean (σ Known): Probability Approach

Step 1 The Set-Up: Null (H_0) and alternative (H_a) hypotheses H_0 : $\mu = 69$ " vs. H_a : $\mu \neq 69$ "

Step 2 The Hypothesis Test Criteria: Test statistic.

$$z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$

 $z^* = \frac{x - \mu_0}{\sqrt{n}}$ σ known, n is "large" so by CLT \bar{x} is normal z^* is normal

Step 3 The Sample Evidence: Calculate test statistic.

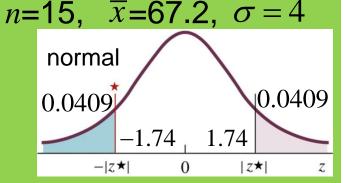
$$z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{67.2 - 69}{4 / \sqrt{15}} = -1.74$$

Step 4 The Probability Distribution:

$$P(z > |z^*|) = p - \text{value} \rightarrow 0.0819$$

Step 5 The Results:

$$p-\text{value} \leq \alpha$$
 , reject H_0 , $p-\text{value} > \alpha$ fail to reject H_0



 $\alpha = 0.05$

8.4 Hypothesis Test of Mean (σ Known): Probability Approach

Null Hypothesis	Alternative Hypothesis
1. Greater than or equal to (≥)	Less than (<)
2. Less than or equal to (≤)	Greater than (>)
3. Equal to $(=)$	Not equal to (\neq)

8.4 Hypothesis Test of Mean (σ Known): Probability Approach

Step 1 The Set-Up: Null (H_0) and alternative (H_a) hypotheses H_0 : $\mu \ge 69$ " vs. H_a : $\mu < 69$ "

Step 2 The Hypothesis Test Criteria: Test statistic.

$$z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$

 $z^* = \frac{\overline{x} - \mu_0}{\overline{x}}$ σ known, n is "large" so by CLT \overline{x} is normal z^* is normal

normal

0.0409

Step 3 The Sample Evidence: Calculate test statistic.

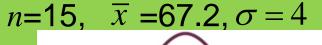
$$z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{67.2 - 69}{4 / \sqrt{15}} = -1.74$$

Step 4 The Probability Distribution:

$$P(z < z^*) = p - \text{value} \rightarrow 0.0409$$

Step 5 The Results:

$$p-\text{value} \leq \alpha$$
 , reject H_0 , $p-\text{value} > \alpha$ fail to reject H_0 $\alpha = 0.09$



8.4 Hypothesis Test of Mean (σ Known): Probability Approach

Null Hypothesis	Alternative Hypothesis
 Greater than or equal to (≥) Less than or equal to (≤) Equal to (=) 	Less than (<) Greater than (>) Not equal to (≠)

8.4 Hypothesis Test of Mean (σ Known): Probability Approach

Step 1 The Set-Up: Null (H_0) and alternative (H_a) hypotheses H_0 : $\mu \le 69$ " vs. H_a : $\mu > 69$ "

Step 2 The Hypothesis Test Criteria: Test statistic.

$$z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$

 $z^* = \frac{x - \mu_0}{\sqrt{n}}$ σ known, n is "large" so by CLT \bar{x} is normal z* is normal

Step 3 The Sample Evidence: Calculate test statistic.

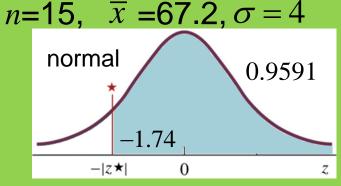
$$z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{67.2 - 69}{4 / \sqrt{15}} = -1.74$$

Step 4 The Probability Distribution:

$$P(z > z^*) = p - \text{value} \rightarrow 0.9691$$

Step 5 The Results:

$$p$$
 - value $\leq \alpha$, reject H_0 , p - value $> \alpha$ fail to reject H_0



 $\alpha = 0.05$

8.4 Hypothesis Test of Mean (σ Known): Probability Approach

Step 1 The Set-Up: Null (H_0) and alternative (H_a) hypotheses H_0 : $\mu = 69$ " vs. H_a : $\mu \neq 69$ "

Step 2 The Hypothesis Test Criteria: Test statistic.

$$z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$

 $z^* = \frac{x - \mu_0}{\sqrt{n}}$ σ known, n is "large" so by CLT \bar{x} is normal z^* is normal

Step 3 The Sample Evidence: Calculate test statistic.

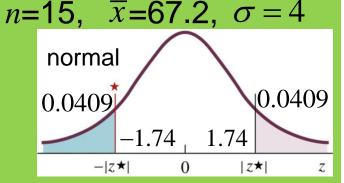
$$z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{67.2 - 69}{4 / \sqrt{15}} = -1.74$$

Step 4 The Probability Distribution:

$$P(z > |z^*|) = p - \text{value} \rightarrow 0.0819$$

Step 5 The Results:

$$p-\text{value} \leq \alpha$$
 , reject H_0 , $p-\text{value} > \alpha$ fail to reject H_0



 $\alpha = 0.05$

8.5 Hypothesis Test of Mean (σ Known): Classical Approach

Step 1 The Set-Up: Null (H_0) and alternative (H_a) hypotheses H_0 : $\mu = 69$ " vs. H_a : $\mu \neq 69$ "

Step 2 The Hypothesis Test Criteria: Test statistic.

$$z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$

 $z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$ σ known, n is "large" so by CLT \overline{x} is normal z^* is normal z^* is normal

Step 3 The Sample Evidence: Calculate test statistic.

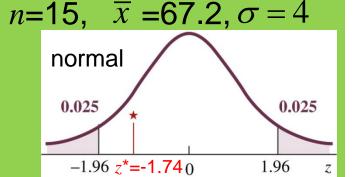
$$z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{67.2 - 69}{4 / \sqrt{15}} = -1.74$$

Step 4 The Probability Distribution:

$$\alpha = 0.05$$
, $z(\alpha/2)=1.96$

Step 5 The Results:

 $|z*|>z(\alpha/2)$, reject H_0 , $|z*|\leq z(\alpha/2)$ fail to reject H_0



8: Introduction to Statistical Inference 8.5 Hypothesis Test of Mean (σ Known): Classical Approach

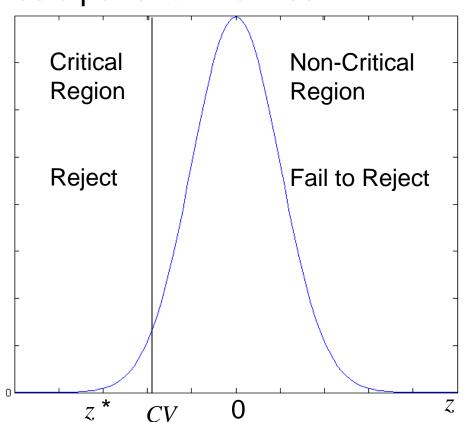
There are three possible hypothesis pairs for the mean.

$$H_0: \mu \ge \mu_0 \text{ vs. } H_a: \mu < \mu_0$$

Reject H₀ if less than

$$z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \qquad -z(\alpha)$$

data indicates $\mu < \mu_0$ because \overline{x} is "a lot" smaller than μ_0



8: Introduction to Statistical Inference 8.5 Hypothesis Test of Mean (σ Known): Classical Approach

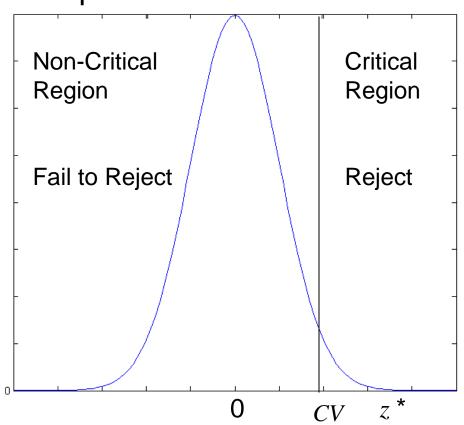
There are three possible hypothesis pairs for the mean.

$$H_0: \mu \le \mu_0 \text{ vs. } H_a: \mu > \mu_0$$

Reject H_0 if greater then

$$z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \qquad z(\alpha)$$

data indicates $\mu > \mu_0$ because \overline{x} is "a lot" larger than μ_0



8: Introduction to Statistical Inference 8.5 Hypothesis Test of Mean (σ Known): Classical Approach

There are three possible hypothesis pairs for the mean.

$$H_0$$
: $\mu = \mu_0$ vs. H_a : $\mu \neq \mu_0$

Reject H_0 if less than

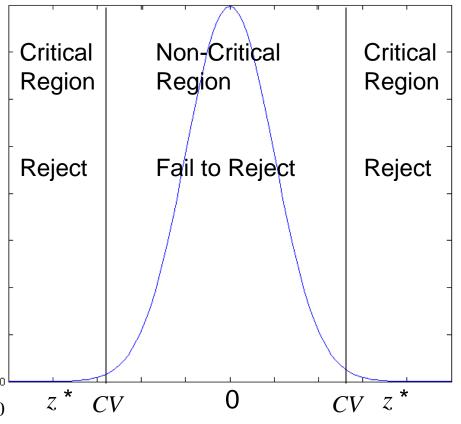
$$z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \qquad -z(\alpha / 2)$$

or if

is greater than

$$z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \qquad z(\alpha / 2)$$

data indicates $\mu \neq \mu_0$, \overline{x} far from μ_0 z^* CV



Exam 2 Next Class