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Agenda:

Recap Chapter 2.5, 3.1

Lecture Chapter 3.2, 3.3

Rowe, D.B.
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Recap Chapter 2.5
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2: Descriptive Analysis and Single Variable Data
2.5 Measures of Position

Measures of Position: Quartiles - ranked data into quarters

L = lowest value

H = highest value

Q2 = median

Q1 = 25% smaller

Q3 = 75% smaller

IQR = Q3 - Q1
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2: Descriptive Analysis and Single Variable Data
2.5 Measures of Position

Measures of Position: percentiles - rank data into 100ths

L = lowest value

H = highest value

Pk = value where k% are smaller

  

Rowe, D.B.

Figure from Johnson & Kuby, 2012.

100

nk
rank data pk halfway between value and next one

     average of Ath and (A+1)th values

pk is value in next largest position, B value

Marquette University                                      MATH 1700



6

2: Descriptive Analysis and Single Variable Data
2.5 Measures of Position

Standard score, or z-score: The position a particular value 

of x has relative to the mean, measured in standard deviations.

There can be n of these because we have                   . 
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2: Descriptive Analysis and Single Variable Data

Questions?

Homework: Read Chapter 2.5-2.7

   WebAssign 

   Chapter 2 # 115, 123c-d, 129, 137 

Rowe, D.B.
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Recap Chapter 3.1

Rowe, D.B.
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3: Descriptive Analysis and Bivariate Data
3.1 Bivariate Data: two qualitative

Cross-tabulation tables or contingency tables

Example:

Construct a 2×3 table.

Rowe, D.B.

Figures from Johnson & Kuby, 2012.

M = male

F = female

LA = liberal arts

BA = business admin

T = technology
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3: Descriptive Analysis and Bivariate Data
3.1 Bivariate Data: one qualitative and one quantitative

Example:

Rowe, D.B.

Figures from Johnson & Kuby, 2012.

Vertical box-and-whiskers
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3: Descriptive Analysis and Bivariate Data
3.1 Bivariate Data: two quantitative, Scatter Diagram

Example: Push-ups

Input variable: independent variable, x. 

Output variable: dependent variable, y.

Rowe, D.B.

Figures from Johnson & Kuby, 2012.

(x,y) ordered pairs.

Scatter Diagram: A plot of all the 

ordered pairs of bivariate data on 

a coordinate axis system. 
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3: Descriptive Analysis and Bivariate Data

Questions?

Homework: Read Chapter 3

   WebAssign

   Chapter 3 # 3, 7, 15

Rowe, D.B.
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3: Descriptive Analysis and Bivariate Data
3.1 Bivariate Data: two quantitative, Scatter Diagram

A previous class’ data. 

Gender, height, weight.

Use height vs. weight (no gender).

Rowe, D.B.
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3: Descriptive Analysis and Bivariate Data
3.1 Bivariate Data: Scatter Diagram of previous class data. 

14
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n=27 responsesHeight vs. Weight
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Chapter 3: Descriptive Analysis and 

Presentation of Bivariate Data
continued

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

Rowe, D.B.
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3: Descriptive Analysis and Bivariate Data
3.2 Linear Correlation

Linear Correlation, r, is a measure of the strength of a linear 

relationship between two variables x and y.

                                   Will discuss its computation in a minute.

Rowe, D.B.

1 1r−  

Figure from Johnson & Kuby, 2012.

0r  0.5r  0.8r  0.5r  − 0.8r  −
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3: Descriptive Analysis and Bivariate Data
3.2 Linear Correlation

Values closer to +1 or -1 mean a stronger relationship.

Values near 0 mean a weak association.

Positive values mean a positive relationship.

positive relationship means as x increases so does y

Negative values mean a negative relationship.

negative relationship means as x increases y decreases

Rowe, D.B.
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3: Descriptive Analysis and Bivariate Data
3.2 Linear Correlation

Rowe, D.B.

Figure from Johnson & Kuby, 2012.

1r = 1r = −
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3: Descriptive Analysis and Bivariate Data
3.2 Linear Correlation

Computing the linear correlation coefficient r.

1. 

2.

1. and 2. are equivalent.

( )

( ) ( )

SS xy
r

SS x SS y
=

1

( )( )

( 1)

n

i i

i

x y

x x y y

r
n s s

=

− −

=
−



19
Rowe, D.B.

1 1 1

1
( )

n n n

i i i i

i i i

SS xy x y x y
n= = =

  
= −   

  
  

2

2

1 1

1
( )

n n

i i

i i

SS x x x
n= =

 
= −  

 
 

2

2

1 1

1
( )

n n

i i

i i

SS y y y
n= =

 
= −  

 
 

std 'sxs x= std 'sys y=

Marquette University                                      MATH 1700



20

3: Descriptive Analysis and Bivariate Data
3.2 Linear Correlation

Example:

Rowe, D.B.
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Figure from Johnson & Kuby, 2012.
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3: Descriptive Analysis and Bivariate Data
3.2 Linear Correlation

Example:

Rowe, D.B.
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Figures from Johnson & Kuby, 2012.
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3: Descriptive Analysis and Bivariate Data
3.2 Linear Correlation

Example:

Rowe, D.B.
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3: Descriptive Analysis and Bivariate Data
3.2 Linear Correlation

Example: Previous class’ data!

23
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3: Descriptive Analysis and Bivariate Data
3.2 Linear Correlation

Example: Previous class’ data!

24
Rowe, D.B.

( )  23701.0SS xy =

( ) 483.0SS x =

( ) 15593.0SS y =

( )
0.86

( ) ( )

SS xy
r

SS x SS y
= =

2

2

1 1

1
( )

n n

i i

i i

SS x x x
n= =

 
= −  

 
 

1 1 1

1
( )

n n n

i i i i

i i i

SS xy x y x y
n= = =

  
= −   

  
  

Height vs. Weight

n=27

1

269982
n

i i

i

x y
=

=

2

1

121820
n

i

i

x
=

=

2

1

605818
n

i

i

y
=

=

1

1810
n

i

i

x
=

=

1

3992
n

i

i

y
=

=

Marquette University                                      MATH 1700



25

3: Descriptive Analysis and Bivariate Data
3.2 Linear Correlation

Understanding Linear Correlation

Skip for now. Read on own.

Causation and Lurking Variables

Correlation does not necessarily imply causation.

Just because two things are highly related does not 

mean that one causes the other.

Soda sales go up, flu incidence goes down.

Does soda cause flu to go down?

Rowe, D.B.
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3: Descriptive Analysis and Bivariate Data
3.3 Linear Regression

Regression analysis finds the equation of a line that “best” 

describes the relationship between the two variables (x and y).

What do we mean by “best?” 

How is “bestness” determined?

Least squares regression.

Rowe, D.B.
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3: Descriptive Analysis and Bivariate Data
3.3 Linear Regression

 Let’s say that we are given points as in figure.

 We want to find the “best” fit line to the data.

27

Imagine that there is an underlying line 

that the data fits to (or comes from).

β0 is y-intercept and β1 is slope.

The points are considered to be

0 1y x = +

0 1i i iy x  = + +

random 

error

Rowe, D.B.
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3: Descriptive Analysis and Bivariate Data
3.3 Linear Regression

 We can try different lines until we find the “best” one.

 Let’s call the “best” one                .

 
28

0 1ŷ b b x= +
is estimated y-intercept 

and is estimated slope.
0b

1b

Imagine that there is an underlying line 

that the data fits to (or comes from).

β0 is y-intercept and β1 is slope.

The points are considered to be

0 1i i iy x  = + + 1,...,i n=

Rowe, D.B.

0 1y x = +
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3: Descriptive Analysis and Bivariate Data
3.3 Linear Regression

 What is criteria for bestness? → Sum of squared distances.

The points are considered to be

The “best” line value at xi is

These vertical distances εi 

are called residuals.
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3: Descriptive Analysis and Bivariate Data
3.3 Linear Regression

 What is criteria for bestness? → Sum of squared distances.

30

We move around the line until the 

sum of the squared residuals

is made a minimum. 

Least squares line.

This is a measure of misfit and a 

criterion for the “best“ line.
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3: Descriptive Analysis and Bivariate Data
3.3 Linear Regression

 We don't actually have to move the line around.

 We can find the “best” fit line that minimizes the 

 sum of the squared residuals by using Equations 3.5-3.7a.

                                          or                          

 then                     because line goes through           .

                         31
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3: Descriptive Analysis and Bivariate Data
3.3 Linear Regression

  Example: Using (1,1),(3,2),(2,3),(4,4)

                         

                     

                    ,                ,                                                            
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3: Descriptive Analysis and Bivariate Data
3.3 Linear Regression

  Example: Using (1,1),(3,2),(2,3),(4,4)

                         

                     

                    ,                ,                                                            
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3: Descriptive Analysis and Bivariate Data
3.3 Linear Regression

  Example: Using (1,1),(3,2),(2,3),(4,4)

                         

                                                                   

                     ,
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3: Descriptive Analysis and Bivariate Data
3.3 Linear Regression

  Example: Using (1,1),(3,2),(2,3),(4,4)

                         

                                                                   

                     ,
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3: Descriptive Analysis and Bivariate Data
3.3 Linear Regression

  Example: Using (1,1),(3,2),(2,3),(4,4)
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0 1b y b x= − =
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3: Descriptive Analysis and Bivariate Data
3.3 Linear Regression

  Example: Using (1,1),(3,2),(2,3),(4,4)
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0 1 (2.5) (0.8)(2.5) 0.5b y b x= − = − =

Rowe, D.B.
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3: Descriptive Analysis and Bivariate Data
3.3 Linear Regression

(x,y) pairs: (1,1),(3,2),(2,3),(4,4)

The line goes through            .

The slope is b1=

The y - intercept b0=

Two points

( , )x y

rise

run

Rowe, D.B.
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3: Descriptive Analysis and Bivariate Data
3.3 Linear Regression

(x,y) pairs: (1,1),(3,2),(2,3),(4,4)

The line goes through            .

The slope is b1=0.8.

The y - intercept b0=0.5 .

Two points (2.5,2.5) and (0,.5).

( , )x y

rise

run

Rowe, D.B.
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3: Descriptive Analysis and Bivariate Data
3.3 Linear Regression

40
Rowe, D.B.

1

( ) 2370.1
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( ) 483.0
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SS x
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0 (147.9) (4.9)(67.0) 180.4b = − = −

xy

( , )x y

point-slope formula

Example: Previous class’ data!
Height vs. Weight

units of lbs/in

1b
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3: Descriptive Analysis and Bivariate Data
3.3 Linear Regression

41
Rowe, D.B.

ˆ -180.4 4.9y x= +

So if a new student adds 

the class and is x=70 in tall, 

the best guess for his/her 

weight is about y=162.6 lbs.

Example: Previous class’ data!
Height vs. Weight

( , )x y
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3: Descriptive Analysis and Bivariate Data

Questions?

Homework: Read Chapter 3.2-3.3

   WebAssign

   Chapter 3 # 33, 44, 53, 59, 75

                    

Rowe, D.B.

Page 169 Problem 3.105
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