Class 3

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

Agenda:

Recap Chapter 2.1 – 2.4

Lecture Chapter 2.5

Lecture Chapter 3.1

Recap Chapter 2.1 – 2.4

Chapter 2: Descriptive Analysis and Presentation of Single-Variable Data

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

2.1 Graphs - Qualitative Data

Circle (pie) graphs and bar graphs:

Circle is parts to whole as angle.

Bar graph is amount in each category as rectangular areas.

Figures from Johnson & Kuby, 2012.

2: Descriptive Analysis and Single Variable Data 2.2 Frequency Distributions and Histograms

Statistics Exam Scores

60	47	82	95	88	72	67	66	68	98	90	77	86
			74									
			70									•
			86									

Boundaries	Frequency
$35 \le x < 45$	2
$45 \leq x < 55$	2
$55 \le x < 65$	7
$65 \le x < 75$	13
$75 \le x < 85$	11
$85 \leq x < 95$	11
$95 \le x \le 105$	4
	50

2: Descriptive Analysis and Single Variable Data 2.3 Measures of Central Tendency

Sample Mean: Usual average, p. 63
$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Sample Median: Middle value, p. 64 n odd, $\tilde{x} = \frac{n+1}{2}$ value n even, avg $\frac{n}{2}$ & $\frac{n}{2} + 1$ values

Sample Mode: Most often, p. 66 $\hat{x} = \text{most often}$

Measures of central tendency characterize center of distribution.

Measures of dispersion characterize the variability in the data.

Range: H-L, p. 74

Deviation from mean: value minus sample mean, p. 74

 i^{th} deviation from mean = $x_i - \overline{x}$

Sample Variance: avg. squared dev using n-1 in den, p. 76

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} \qquad s^{2} = \frac{1}{n-1} \left\{ \sum_{i=1}^{n} x_{i}^{2} - \left[\left(\sum_{i=1}^{n} x_{i} \right)^{2} / n \right] \right\}$$

Sample Standard Deviation: $s = \sqrt{s^2}$

2: Descriptive Analysis and Single Variable Data 2.3, 2.4 Measures of Central Tendency and Dispersion

Example: Data values: 1,2,2,3,4

$$\overline{x} = 2.4$$
 $\tilde{x} = 2$ $\hat{x} = 2$

$$\tilde{x} = 2$$

$$\hat{x} = 2$$

$$s^2 = 1.3$$
 $s = 1.1$

$$s = 1.1$$

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

 $\tilde{x} = \text{middle}$ value

 $\hat{x} = \text{most often value}$

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$

$$s = \sqrt{s^2}$$

=AVERAGE(A1:A5)

=MEDIAN(A1:A5)

=MODE(A1:A5)

=VAR(A1:A5)

=STDEV(A1:A5)

Chapter 2: Descriptive Analysis and Presentation of Single-Variable Data Continued

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

Measures of Position: Describe the relative position a specific data value possesses in relation to rest of data when in ranked order.

Quartiles: Values of the variable that divide ranked data into quarters.

L = lowest value H = highest value $Q_2 = \tilde{x} = \text{median}$

 Q_1 = data value where 25% are smaller

 Q_3 = data value where 75% are smaller

5-number summary

- 1. L = lowest value
- 2. Q_1 = data value where 25% are smaller
- 3. $Q_2 = \tilde{x} = \text{median}$ (where 50% are smaller)
- 4. Q_3 = data value where 75% are smaller
- 5. H = highest value

Interquartile range: The difference between the first and third quartiles. It is the range of the middle 50% of the data.

$$IQR = Q_3 - Q_1$$

More generally, percentiles. Quartiles are special percentiles.

Percentile: Values of the variable that divide ranked data into 100 equal subsets.

L = lowest value

H = highest value

 P_k = value where k% are smaller L

You've taken standardized exams and received a %ile.

Ranked data, increasing order

Figures from Johnson & Kuby, 2012.

The Percentile Process: Four basic steps for k^{th} percentile.

Example: 1,2,3,4,5.

L = low value

H = high value

 Q_2 = median

 Q_1 = value where 25% smaller

 Q_3 = value where 75% smaller

$$L = ?$$

$$H = ?$$

$$Q_2 = ?$$

$$Q_1: \frac{nk}{100} =$$

$$\rightarrow$$
? value

$$Q_3: \frac{nk}{100} =$$

$$Q_1 = ?, Q_3 = ?$$

$$\rightarrow$$
? value

Example: 1,2,3,4,5.

L = low value

H = high value

 Q_2 = median

 Q_1 = value where 25% smaller

 Q_3 = value where 75% smaller

$$L = ? \rightarrow 1$$

$$H = ? \rightarrow 5$$

$$Q_2 = ? \rightarrow 3$$

$$Q_1$$
: $\frac{nk}{100} = \frac{5(25)}{100} = 1.25 \rightarrow 2^{nd}$ value $Q_1 = 2, Q_3 = 4$

$$Q_3$$
: $\frac{nk}{100} = \frac{5(75)}{100} = 3.75 \rightarrow 4^{th}$ value

2.5 Measures of Position

Box-and-whiskers display: A graphic representation of the

5-number summary. L, Q_1 , Q_2 , Q_3 , H.

Example: 1,2,3,4,5.

$$L = 1$$

$$Q_1 = 2$$

$$Q_2 = 3$$

$$Q_3 = 4$$

$$H = 5$$

Standard score, or z-score: The position a particular value of *x* has relative to the mean, measured in standard deviations.

$$z_{i} = \frac{i^{\text{th}} \text{ value - mean}}{\text{std. dev.}} = \frac{x_{i} - \overline{x}}{s}$$
 (2.11)

There can be n of these because we have $x_1, x_2, ..., x_n$.

Standard score, or z-score:

Example: 1, 2, 3, 4, 5

$$z_i = \frac{x_i - \overline{x}}{s} \qquad \qquad \overline{x} = 3$$
$$s = 1.58$$

$$\overline{x} = 3$$
$$s = 1.58$$

$$z_1 = \frac{x_1 - \overline{x}}{s} = ?$$

Standard score, or z-score:

Example: 1, 2, 3, 4, 5

$$z_i = \frac{x_i - \overline{x}}{s} \qquad \qquad \overline{x} = 3$$
$$s = 1.58$$

$$\overline{x} = 3$$
$$s = 1.58$$

$$z_1 = \frac{x_1 - \overline{x}}{s} = \frac{1 - 3.00}{1.58} = -1.3$$

$$z_1 = -1.2649$$

$$z_2 = -0.6325$$

$$z_3 = 0$$

$$z_4 = 0.6325$$

$$z_5 = 1.2649$$

2.5 Measures of Position

$$n = 100$$

	mean	stdev	
Example: What is your z score?	67.4	3.6	

Height
$$x$$

Deviation $dev = x - \overline{x}$
 $z ext{-score}$
 $z = \frac{x - \overline{x}}{s}$

2.5 Measures of Position

n = 100 $\frac{nk}{100}$

Example: Compute the 5 number summary.

2.6 Interpreting and Understanding Standard Deviation

Read this section (and 2.7) on your own.

Bell Curve Normal Distribution Gaussian Distribution

Questions?

Homework: Read Chapter 2.5-2.7

WebAssign

Chapter 2 # 115, 123c-d, 129, 137

Chapter 3: Descriptive Analysis and Presentation of Bivariate Data

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

3.1 Bivariate Data

Bivariate data: The values of two different variables that are obtained from the same population element.

Qualitative-Qualitative
Qualitative-Quantitative
Quantitative-Quantitative

When Qualitative-Qualitative Cross-tabulation tables or contingency tables Sometimes called r by c ($r \times c$)

3.1 Bivariate Data: two qualitative

Example:

M = male F = female LA = liberal arts

BA = business admin

T = technology

Name	Gender	Major	Name	Gender	Major	Name	Gender	Major
Adams	M	LA	Feeney	M	Τ	McGowan	M	ВА
Argento	F	BA	Flanigan	M	LA	Mowers	F	BA
Baker	\bigwedge	LA	Hodge	F	LA	Ornt	\bigwedge	T
Bennett	F	LA	Holmes	\bigwedge	T	Palmer	F	LA
Brand	\bigwedge	T	Jopson	F	Τ	Pullen	M	T
Brock	\bigwedge	BA	Kee	\bigwedge	BA	Rattan	M	BA
Chun	F	LA	Kleeberg	M	LA	Sherman	F	LA
Crain	\bigwedge	T	Light	\bigwedge	BA	Small	F	T
Cross	F	BA	Linton	F	LA	Tate	M	ВА
Ellis	F	BA	Lopez	M	T	Yamamoto	M	LA

3.1 Bivariate Data: two qualitative

Example:

Construct a 2×3 table.

Name	Gender	Major	Name	Gender	Major	Name	Gender	Major
Adams	M	LA	Feeney	M	T	McGowan	M	ВА
Argento	F	BA	Flanigan	M	LA	Mowers	F	ВА
Baker	M	LA	Hodge	F	LA	Ornt	M	T
Bennett	F	LA	Holmes	M	T	Palmer	F	LA
Brand	M	T	Jopson	F	Τ	Pullen	M	T
Brock	M	ВА	Kee	M	BA	Rattan	M	ВА
Chun	F	LA	Kleeberg	M	LA	Sherman	F	LA
Crain	M	T	Light	M	BA	Small	F	Ţ
Cross	F	BA	Linton	F	LA	Tate	M	ВА
Ellis	F	BA	Lopez	M	T	Yamamoto	M	LA

		Major	
Gender	LA	BA	T
M F	[(5) (6)	(6) (4)	(7) (2)

M = male

F = female

LA = liberal arts

BA = business admin

T = technology

3.1 Bivariate Data: two qualitative

Example:

Percentages based on grand total (next slide).

		Major					
Gender	LA	ВА	T				
M F	(5) (6)	(6) (4)	(7) (2)				

	Major					
Gender	LA	BA	T	Row Total		
M F	5 6	6 4	7 2	18 12		
Col. Total	11	10	9	30		

M = male

F = female

LA = liberal arts

BA = business admin

T = technology

3.1 Bivariate Data: two qualitative

Example:

Percentages based on grand total.

	Major					
Gender	LA	BA	Ţ	Row Total		
M F	5 6	6 4	7	18 12		
Col. Total	11	10	9	(30)		

	Major					
Gender	LA	BA	Ţ	Row Total		
M F	1 <i>7</i> % 20%	20% 13%	23% 7%	60% 40%		
Col. Total	37%	33%	30%	100%		

7/30*100%=23%

M = male

F = female

LA = liberal arts

BA = business admin

T = technology

Divide all numbers by grand total.

3.1 Bivariate Data: two qualitative

Example:

Percentages based on row totals.

	Major					
Gender	LA	BA	T	Row Total		
M F	5 6	6 4	7	18		
Col. Total	11	10	9	30		

	Major					
Gender	LA	BA	Ţ	Row Total		
M F	28% 50%	33% 33%	39% 17%	100% 100%		
Col. Total	37%	33%	30%	100%		

7/18*100%=39%

M = male

F = female

LA = liberal arts

BA = business admin

T = technology

Divide all row numbers by row total.

3.1 Bivariate Data: two qualitative

Example:

Percentages based on column totals.

	Major						
Gender	LA	BA	Ţ	Row Total			
M F	5 6	6 4	7	18 12			
Col. Total	11	10	9	30			

	Major						
Gender	LA	BA	Ţ	Row Total			
M F	45% 55%	60% 40%	78% 22%	60% 40%			
Col. Total	100%	100%	100%	100%			

7/9*100%=78%

M = male

F = female

LA = liberal arts

BA = business admin

T = technology

Divide all row numbers by column total.

3.1 Bivariate Data: one qualitative and one quantitative

Example: Stopping Distances (in feet) for three treads.

3.1 Bivariate Data: one qualitative and one quantitative

Example:

Design A $(n = 6)$	Design B $(n = 6)$	Design C $(n = 6)$			
37 36 38	33 35 38	40 39 40			
34 40 32	34 42 34	41 41 43			

	Design A	Design B	Design C
High	40	42	43
$High$ Q_3	38	38	41
Median	36.5	34.5	40.5
Q_1	34	34	40
Low	32	33	39

	Design A	Design B	Design C
Mean	36.2	36.0	40.7
Standard deviation	2.9	3.4	1.4

3.1 Bivariate Data: two quantitative

When have paired quantitative data, represent as (x,y) ordered pairs.

Input variable called independent variable, x. Output variable called dependent variable, y.

Scatter Diagram: A plot of all the ordered pairs of bivariate data on a coordinate axis system. The input variable, x, is plotted on the horizontal axis and the output variable, y, is plotted on the vertical axis.

3.1 Bivariate Data: two quantitative, Scatter Diagram

Example: Push-ups

Student	1	2	3	4	5	6	7	8	9	10
Push-ups, x Sit-ups, y								55 54		

Push-ups

3.1 Bivariate Data: Scatter Diagram Our data.

Voluntarily provided data from students in a previous MATH 1700 class.

Questions?

Homework: Read Chapter 3

WebAssign

Chapter 3 # 3, 7, 15