MATH 1700

Class 25

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

Be The Difference.

Copyright by D.B. Rowe

Agenda:

Recap Chapter 11.1-11.3

Lecture Chapter 12.1

Recap Chapter 11.1-11.3

MATH 1700

11: Applications of Chi-Square 11.1 Chi-Square Statistic Cooling a Great Hot Taste

Quite often we have qualitative data in categories.

Example: Cooling mouth after hot spicy food.

Method	Water	Bread	Milk	Beer	Soda	Nothing	Other
Number	73	29	35	19	20	13	11

11: Applications of Chi-Square 11.1 Chi-Square Statistic Data Setup

Example: Cooling mouth after hot spicy food.

Method	Water	Bread	Milk	Beer	Soda	Nothing	Other
Number	73	29	35	19	20	13	11

Data set up: *k* cells C_1, \ldots, C_k that *n* observations sorted into Observed frequencies in each cell O_1, \ldots, O_k . $O_1 + \ldots + O_k = n$ Expected frequencies in each cell E_1, \ldots, E_k . $E_1 + \ldots + E_k = n$

Cell	C_1	<i>C</i> ₂	-	-		C_k
Observed	<i>O</i> ₁	<i>O</i> ₂				O_k
Expected	E_1	E_2	•	•	•	E_k

11: Applications of Chi-Square 11.1 Chi-Square Statistic Data Setup

Example: Cooling mouth after hot spicy food.

Method	Water	Bread	Milk	Beer	Soda	Nothing	Other
Number	73	29	35	19	20	13	11

Data set up: *k* cells C_1, \ldots, C_k that *n* observations sorted into Observed frequencies in each cell O_1, \ldots, O_k . $O_1 + \ldots + O_k = n$ Expected frequencies in each cell E_1, \ldots, E_k . $E_1 + \ldots + E_k = n$

Cell	C_1	<i>C</i> ₂	-	-		C_k
Observed	<i>O</i> ₁	<i>O</i> ₂				O_k
Expected	E_1	E_2	•	•	•	E_k

11: Applications of Chi-Square 11.2 Inferences Concerning Multinomial Experiments

Example: We work for Las Vegas Gaming Commission. We have received many complaints that dice at particular casino are loaded (weighted, not fair). We confiscate all dice and test one. We roll it n=60 times. We get following data.

Cell, i	1	2	3	4	5	6
Observed, O_i	7	12	10	12	8	11
Expected, E_i	10	10	10	10	10	10

Expected Value for Multinomial Experiment:

$$E_i = np_i \tag{11.3}$$

11: Applications of Chi-Square 11.2 Inferences Concerning Multinomial Experiments

Example: We work for Las Vegas Gaming Commission. We have received many complaints that dice at particular casino are loaded (weighted, not fair). We confiscate all dice and test one. We roll it n=60 times. We get following data.

Cell, i	1	2	3	4	5	6
Observed, O_i	7	12	10	12	8	11
Expected, E_i	10	10	10	10	10	10

Expected Value for Multinomial Experiment:

$$E_i = np_i \tag{11.3}$$

11: Applications of Chi-Square 11.3 Inferences Concerning Contingency Tables *Test of Independence*

Is "Preference for math-science, social science, or humanities" ... "independent of the gender of a college student?"

Sample Results for Gender and Subject Preference

Favorite Subject Area					
Gender	Math–Science (MS)	Social Science (SS)	Humanities (H)	Total	
Male (M) Female (F)	37 35	41 72	44 71	122 178	
Total	72	113	115	300	

Figure from Johnson & Kuby, 2012.

11: Applications of Chi-Square 11.3 Inferences Concerning Contingency Tables *Test of Independence*

Is "Preference for math-science, social science, or humanities" ... "independent of the gender of a college student?"

There is a Hypothesis test (of independence) to determine this. Is Favorite Subject independent of Gender.

Similar to Example with the Die, now have rows i and columns j. Observed values, O_{ii} 's.

$(\mathbf{O} \mathbf{E})^2$			· · · · · · · · · · · · · · · · · · ·	J	
$\chi^{2}*-\sum \frac{(O_{ij}-E_{ij})}{(O_{ij}-E_{ij})}$			Favorite Subject Area		
$\chi = \sum_{n=1}^{n} \overline{E_n}$	Gender	Math–Science (MS)	Social Science (SS)	Humanities (H)	Total
all cells ${ij}$	Male (M) Female (F)	37 35	41 72	44 71	122 178
Mhat are F 's?	Total	72	113	115	300
$V \cap a \cap L_{ij} \circ :$			Figure from .	Johnson & Kuby,	2012.

MATH 1700

(11.4)

11: Applications of Chi-Square 11.3 Inferences Concerning Contingency Tables $\chi^{2*} = \sum_{all \ cells} \frac{(O_{ij} - E_{ij})^2}{E_{ij}}$

D of **F** for Contingency Tables: df = (r-1)(c-1)

r>1,*c*>1

Where does this formula for E_{ii} 's come from?

rows i and columns j

72

11: Applications of Chi-Square 11.3 Inferences Concerning Contingency Tables Test of Independence

$$E_{ij} = \frac{R_i C_j}{n}$$

Where does this formula for E_{ii} 's come from? **Favorite Subject Area** Gender MS SS Η Total Male 37 (29.28) 41 (45.95) 44 (46.77) 122 *r*=2 35 (42.72) 72 (67.05) 71 (68.23) 178 Female c=3300

If Favorite Subject is independent of Gender, then

115

$$\chi^{2*} = \sum_{all \ cells} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}} < \chi^{2}(2, 0.05) \qquad \alpha = 0.05$$

$$\chi^{2*} = 4.604 < \chi^{2}(2, 0.05) = 5.99$$

113

Figure from Johnson & Kuby, 2012.

Rowe, D.B.

Total

11: Applications of Chi-Square 11.3 Inferences Concerning Contingency Tables *Test of Independence*

$$\chi^{2*} = \sum_{all \ cells} \frac{(O_{ij} - E_{ij})^{2}}{E_{ij}} < \chi^{2}((r-1)(c-1),\alpha)$$

Figure from Johnson & Kuby, 2012.

$$E_{ij} = \frac{R_i C_j}{n}$$

11: Applications of Chi-Square 11.3 Inferences Concerning Contingency Tables *Test of Homogeneity*

Is the distribution within all rows the same for all rows?

	Governo	Governor's Proposal	
Residence	Favor	Oppose	Total
Urban Suburban Rural	143 98 13	57 102 87	200 200 100
Total	254	246	500

$$\chi^{2*} = \sum_{all \ cells} \frac{(O_{ij} - E_{ij})^2}{E_{ii}} < \chi^2((r-1)(c-1), \alpha) \qquad \alpha = 0.05$$

$$df = (r-1)(c-1) = (3-1)(2-1)$$

r=3 c=2

Rowe, D.B.

MATH 1700

 $E_{ij} = \frac{R_i C_j}{n}$

Chapter 11: Applications of Chi-Square

Questions?

Homework: Read Chapter 11 WebAssign Chapter 11 # 3, 5, 11, 15, 21, 49, 53

Chapter 12: Analysis of Variance

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical

Be The Difference.

Lecture Chapter 12.1

12: Analysis of Variance 12.1 Introduction to the Analysis of Variance

Previously we learned about hypothesis testing for: One Population: μ , p, and σ^2 . Two Populations: $\mu_d = \mu_1 - \mu_2$, $\mu_1 - \mu_2$, $p_1 - p_2$, and σ_1^2 / σ_2^2 .

(We also learned about hypothesis testing for contingency tables.)

Now we are going to study hypothesis testing for three or more populations.

Three Populations: at least two of $\mu_1, \mu_2, \mu_3, \dots$ different.

12: Analysis of Variance 12.1 Introduction to the Analysis of Variance

If we are testing for differences in means, ...why are we analyzing variance?

As it turns out, we calculate two variances and take the ratio.

If all the means are truly the same, the two variances will be the same and the ratio will be 1.

12: Analysis of Variance 12.1 Introduction to the Analysis of Variance

Example: Hypothesis Test for Three Means, μ_1 , μ_2 , and μ_3 . It is believed that manufacturing plant temperature affects production rate.

		Temperature Levels	
	Sample from $68^{\circ}F(i = 1)$	Sample from 72°F ($i = 2$)	Sample from 76°F ($i = 3$)
	10 12 10 9	7 6 7 8 7	3 3 5 4
Column totals	$C_1 = 41$ $\bar{x}_1 = 10.25$	$C_2 = 35$ $\bar{x}_2 = 7.0$	$C_3 = 15$ $\bar{x}_3 = 3.75$
	$k_1 = 4$	$k_2 = 5$	$k_3 = 4$
	μ_1	μ_2	μ_3

We could test all pairs: $H_0:\mu_1=\mu_2$ vs. $H_a:\mu_1\neq\mu_2$ $H_0:\mu_1=\mu_3$ vs. $H_a:\mu_1\neq\mu_3$ $H_0:\mu_2=\mu_3$ vs. $H_a:\mu_2\neq\mu_3$

	Temperature Levels	
Sample from 68°F ($i = 1$)	Sample from 72°F ($i = 2$)	Sample from 76°F ($i = 3$)
10 12 10 9	7 6 7 8 7	3 3 5 4
$C_1 = 41$ $\bar{x}_1 = 10.25$	$C_2 = 35$ $\bar{x}_2 = 7.0$	$C_3 = 15$ $\bar{x}_3 = 3.75$

But each test increases our Type I error rate, $\alpha = \sum \alpha_i$.

So we would like to perform one single hypothesis test $H_0: \mu_1 = \mu_2 = \mu_3$ vs. $H_a:$ at least two μ 's are different

Example: μ_1 , μ_2 , and μ_3 Let's go through the hypothesis test procedure

Temperature Levels							
Sample from $68^{\circ}F(i = 1)$	Sample from $72^{\circ}F$ ($i = 2$)	Sample from 76°F ($i = 3$)					
10	7	3					
12	6	3					
10	7	5					
9	8	4					
	7						
$C_1 = 41$	$C_2 = 35$	$C_3 = 15$					
$\bar{x}_1 = 10.25$	$\bar{x}_2 = 7.0$	$\bar{x}_3 = 3.75$					

Step 1: a) Parameter of Interest Mean production at 3 temperatures **b)** Statement of Hypotheses $H_0: \mu_1 = \mu_2 = \mu_2$

$$H_0: \mu_1 = \mu_2 = \mu_3$$

VS.

H_a: at least two μ 's are different (it could be $\mu_1 \neq \mu_2$, or $\mu_1 \neq \mu_3$, or $\mu_2 \neq \mu_3$, or $\mu_1 \neq \mu_2 \neq \mu_3$)

Example: μ_1 , μ_2 , and μ_3 Let's go through the hypothesis test procedure

Temperature Levels							
Sample from $68^{\circ}F(i = 1)$	Sample from 72°F ($i = 2$)	Sample from 76°F ($i = 3$)					
10 12 10 9	7 6 7 8 7	3 3 5 4					
$C_1 = 41$ $\bar{x}_1 = 10.25$	$C_2 = 35$ $\bar{x}_2 = 7.0$	$C_3 = 15$ $\bar{x}_3 = 3.75$					

Step 2: a) Assumptions

Normal independent populations, independent observations from each population, equal variances.

b) Test Statistic

Reject or do not reject, *F*-distribution and *F*-statistic.

c) Level of Significance

α=0.05

Example: μ_1 , μ_2 , and μ_3 Let's go through the hypothesis test procedure

Step 3: a) Sample Information

b) Calculate Test Statistic
 Next page

c) Level of Significance α =0.05

Step 3: b) Calculate Test Statistic: *F** Need to calculate 3 Sums of Squares

The Total Sum of Squares can be partitioned

SS(total) = SS(error) + SS(factor)

temperature

Sum of Squares Due to Factor

$$SS(\text{factor}) = \left(\frac{C_1^2}{k_1} + \frac{C_2^2}{k_2} + \frac{C_3^2}{k_3} + \cdots\right) - \frac{(\sum x)^2}{n}$$
(12.3)

 C_i =column total k_i =number of replicates

Step 3: b) Calculate Test Statistic: *F** Need to calculate 3 Sums of Squares

The Total Sum of Squares can be partitioned

SS(total) = SS(error) + SS(factor)

temperature

Sum of Squares Due to Factor

$$SS(factor) = \left(\frac{C_1^2}{k_1} + \frac{C_2^2}{k_2} + \frac{C_3^2}{k_3} + \cdots\right) - \frac{(\sum x)^2}{n}$$
(12.3)

$$SS(temperature) = \left(\frac{41^2}{4} + \frac{35^2}{5} + \frac{15^2}{4}\right) - \frac{(91)^2}{13} = 84.5$$

Step 3: b) Calculate Test Statistic: *F** Need to calculate 3 Sums of Squares The Total Sum of Squares can be partitioned

$$SS(total) = SS(error) + SS(factor)$$

temperature

Sum of Squares Due to Error

$$SS(error) = \sum (x^2) - \left(\frac{C_1^2}{k_1} + \frac{C_2^2}{k_2} + \frac{C_3^2}{k_3} + \cdots\right)$$
(12.4)

$$SS(error) = 731.0 - \left(\frac{41^2}{4} + \frac{35^2}{5} + \frac{15^2}{4}\right) = 9.5$$

Step 3: b) Calculate Test Statistic: *F** Need to calculate 3 Sums of Squares

We will write these Sums of Squares in a table

5)

Temperature Levels

Step 3: b) Calculate Test Statistic: F*

Need to calculate 3 Sums of Squares Need the degrees of freedom for the sum of squares

Degrees of Freedom for Factor

$$df(tactor) = c - 1$$

$$df(temperature) = 3 - 1 = 2$$
(12.3)

Degrees of Freedom for Total

$$df(total) = n - 1$$
 (12.6)

df(total) = 13 - 1 = 12

Degrees of Freedom for Error

$$df(error) = n - c \tag{12.7}$$

df(error) = 13 - 3 = 10

Total

12: Analysis of Variance **Temperature Levels** Sample from 68°F (i = 1) Sample from 72°F (i = 2) Sample from 76°F (i = 3) 12.1 Intro to ANOVA $C_1 = 41$ $C_2 = 35$ $C_3 = 15$ $\bar{x}_1 = 10.25$ $\bar{x}_2 = 7.0$ $\bar{x}_3 = 3.75$ $k_{2} = 5$ $k_{2} = 4$ $k_1 = 4$ **Step 3: b)** Calculate Test Statistic: F* Need to calculate 3 Sums of Squares We then complete the ANOVA table SS(factor) MS(factor) = df(factor) df MS Source SS SS(error) 42.25 2 84.5 Temperature MS(error) = df(error) 10 9.5 0.95 Error

94.0

12

df(factor) = c - 1df(error) = n - c

df(total) = n - 1

MATH 1700

(12.12)

12: Analysis of Variance 12.1 Intro to ANOVA

 $F \bigstar = \frac{\text{MS(factor)}}{\text{MS(error)}}$

Step 4: Probability Distribution
We need to determine if the *F** statistic is "large" or equivalently if the area to its right is "small."

Source	df	SS	MS
Temperature Error	2 10	84.5 9.5	42.25 0.95
Total	12	94.0	$F^* = 44.47$

Marquette University

MATH 1700

12: Analysis of Variance 12.1 Intro to ANOVA

Source	df	SS	MS
Temperature Error	2 10	84.5 9.5	42.25 0.95
Total	12	94.0	$F^* = 44.47$

Step 4: Probability Distribution: *p*-value approach α =0.05 *p*-value= $P(F^*>44.7|df_n=2,df_d=10)$

$\alpha =$	= 0.01 Degrees of Freedom for Numerator										
tor		1	2	3	4	5	6	7	8	9	10
for Denomina	12345	4052. 98.5 34.1 21.2 16.3	5000. 99.0 30.8 18.0 13.3	5403. 99.2 29.5 16.7 12.1	5625 99.2 28.7 16.0 11.4	5764. 99.3 28.2 15.5 11.0	5859. 99.3 27.9 15.2 10.7	5928. 99.4 27.7 15.0 10.5	5981. 99.4 27.5 14.8 10.3	6022. 99.4 27.3 14.7 10.2	6056 99.4 27.2 14.5 10.1
ees of Freedom	6 7 8 9 10	13.7 12.2 11.3 10.6 10.0	10.9 9.55 8.65 8.02 7.56	9.78 8.45 7.59 6.99 6.55	9.15 7.85 7.01 6.42 5.99	8.75 7.46 6.63 6.06 5.64	8.47 7.19 6.37 5.80 5.39	8.26 6.99 6.18 5.61 5.20	8.10 6.84 6.03 5.47 5.06	7.98 6.72 5.91 5.35 4.94	7.87 6.62 5.81 5.26 4.85
Degr	11 12	9.65 9.33	7.21 6.93	6.22 5.95	5.67 5.41	5.32 5.06	5.07 4.82	4.89 4.64	4.74	4.63	4.54

From Table 9C we see that $P(F^*>7.56|df_n=2,df_d=10)=0.01$ so $P(F^*>44.7|df_n=2,df_d=10)<0.01$

Marquette University

MATH 1700

12: Analysis of Variance 12.1 Intro to ANOVA

Source	df	SS	MS
Temperature Error	2 10	84.5 9.5	42.25 0.95
Total	12	94.0	$F^* = 44.47$

Step 4: Probability Distribution: Classical approach $\alpha=0.05$ We need to find the *F* value that has an area of $\alpha=0.05$ larger than it when $df_n=2, df_d=10$.

=0.05	0.05 Degrees of Freedom for Numerator									
3 Stat	1	2	3	4	5	6	7	8	9	10
1 2 3 4 5	161. 18.5 10.1 7.71 6.61	200. 19.0 9.55 6.94 5.79	216. 19.2 9.28 6.59 5.41	225. 19.2 9.12 6.39 5.19	230. 19.3 9.01 6.26 5.05	234. 19.3 8.94 6.16 4.95	237. 19.4 8.89 6.09 4.88	239. 19.4 8.85 6.04 4.82	241. 19.4 8.81 6.00 4.77	242. 19.4 8.79 5.96 4.74
6 7 8 9 10	5.99 5.59 5.32 5.12 4.96	5.14 4.74 4.46 4.26 4.10	4.76 4.35 4.07 3.86 3.71	4.53 4.12 3.84 3.63 3.48	4.39 3.97 3.69 3.48 3.33	4.28 3.87 3.58 3.37 3.22	4.21 3.79 3.50 3.29 3.14	4.15 3.73 3.44 3.23 3.07	4.10 3.68 3.39 3.18 3.02	4.06 3.64 3.35 3.14 2.98
11 12	4.84 4.75	3.98 3.89	3.59 3.49	3.36 3.26	3.20 3.11	3.09	3.01 2.91	2.95	2.90	2.85

From Table 9A we see that the *F* critical value is 4.10.

Marquette University

MATH 1700

12: Analysis of Variance 12.1 Intro to ANOVA

Source	df	<i>SS</i>	MS
Temperature Error	2 10	84.5 9.5	42.25 0.95
Total	12	94.0	$F^* = 44.47$
			<i>α</i> =0.05

Step 5: a) Decision: Reject H_0 *p*-value approach: From Table 9C $P(F^*>44.7|df_n=2,df_d=10)<0.01$ Classical approach: From Table 9A we see that F(2,10,0.05)=4.10.

b) At least two of the means are statistically different.
 At least one of the room temperatures does have a significant effect on the production rate.

Chapter 12: Analysis of Variance

Questions?

Homework: Read Chapter 12 WebAssign Chapter 12 # 2, 9, 17, 18, 19, 32