Class 22

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

Be The Difference.

Copyright by D.B. Rowe ¹

Agenda:

Recap Chapter 10.2-10.3

Lecture Chapter 10.4-10.5

Recap Chapter 10.2-10.3

10.2 Inference for Mean Difference Two Dependent Samples Confidence Interval Procedure

Paired Difference $d - x = r$ (10.1) $d = x_1 - x_2$

$$
\bar{d} = \frac{1}{n} \sum_{i=1}^{n} d_i \qquad s_d^2 = \frac{1}{n-1} \sum_{i=1}^{n} (d_i - \bar{d})^2 \qquad \qquad \mu_{\bar{d}} = \mu_d \quad \sigma_{\bar{d}} = \frac{\sigma_d}{\sqrt{n}}
$$

With $\sigma_{_d}$ unknown, a 1- α confidence interval for μ_{d} =(μ_{1} - μ_{2}) is:

Confidence Interval for Mean Difference (Dependent Samples)

$$
\overline{d}-t(df,\alpha/2)\frac{s_d}{\sqrt{n}} \quad \text{to} \quad \overline{d}+t(df,\alpha/2)\frac{s_d}{\sqrt{n}} \quad \text{where } df=n-1 \quad (10.2)
$$

10.2 Inference for Mean Difference Two Dependent Samples

10.2 Inference for Mean Difference Two Dependent Samples

 $n = 6$ 8, 1, 9, -1, 12, 9

Test mean difference of Brand B minus Brand A is zero.

Conclusion: Significant difference in tread wear at .05 level.

Figures from Johnson & Kuby, 2012.

10: Inferences Involving Two Populations 10.3 Inference for Mean Difference Two Independent Samples Confidence Interval Procedure

With σ_1 and σ_2 unknown, a 1- α confidence interval for $\mu_1 - \mu_2$ is:

Confidence Interval for Mean Difference (Independent Samples)
 $(\overline{x}_1 - \overline{x}_2) - t(df, \alpha / 2) \sqrt{\left(\frac{s_1^2}{n}\right) + \left(\frac{s_2}{n}\right)^2}$ $\frac{2}{\sqrt{2}}$ $\begin{pmatrix} 2 \\ 1 \end{pmatrix} + \begin{pmatrix} S_2^2 \end{pmatrix}$ $\begin{array}{c}\n\sqrt{3} \\
\sqrt{3} \\
\sqrt{3} \\
\sqrt{1} \\
\sqrt{1} \\
\sqrt{1} \\
\sqrt{1} \\
\sqrt{1} \\
\sqrt{1}\n\end{array}$ 2 $\sqrt{2}$ 1 $1 \cdot 1$ 2 $\left(s_i^2\right)\left(s_i^2\right)$

samples)
\n
$$
(\overline{x}_1 - \overline{x}_2) - t(df, \alpha / 2) \sqrt{\left(\frac{s_1^2}{n_1}\right) + \left(\frac{s_2^2}{n_2}\right)}
$$
 to $(\overline{x}_1 - \overline{x}_2) + t(df, \alpha / 2) \sqrt{\left(\frac{s_1^2}{n_1}\right) + \left(\frac{s_2^2}{n_2}\right)}$

where df is either calculated or smaller of df_1 , or df_2 (10.8) Actually, this is for $\sigma_1 \neq \sigma_2$.

Next larger number than

$$
df = \left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2 / \left(\frac{\left(s_1^2 / n_1\right)^2}{n_1 - 1} + \frac{\left(s_2^2 / n_2\right)^2}{n_2 - 1}\right)^2
$$

If using a computer program.

If not using a computer program.

- **9: Inferences Involving One Population**
- **9.2 Inference about the Binomial Probability of Success**

9.2 Inference about the Binomial Probability of Success

9.2 Inference about the Binomial Probability of Success

There are three possible hypothesis pairs for the difference in means. *H*₀: *μ*₁-*μ*₂ = 0 vs. *H_a*: *μ*₁-*μ*₂ ≠ 0 Reject H_0 if less than or if $\left[\begin{array}{ccc} 1 & i \\ j & j \end{array}\right]$ is greater than **Critical** Region Reject Non-Critical Region Fail to Reject *t* * *CV CV* $CV \t^*$ **Critical** Region Reject Ω $t (df, \alpha$ / 2) data indicates $\mu_1\text{-}\mu_2\text{\text{=0, }\overline{x}_{\scriptscriptstyle 1}} - \overline{x}_{\scriptscriptstyle 2}$ far from 0. $\left(s_1^2/n_1 \right) + \left(s_2^2/n_2 \right)$ 1 \mathcal{V}_2 $2 / \lambda$. (2 $1 / 1$ 1 $1 + 2 / 1$ 2 $* = \frac{(\bar{x}_1 - \bar{x}_2) - 0}{\sqrt{(\bar{x}_1 - \bar{x}_2) - 0}}$ $x - x$ *t s* n_1 | n_2 | n_3 | n_4 $-\lambda_0$ $\vert -$ = + $\left(s_1^2/n_1 \right) + \left(s_2^2/n_2 \right)$ 1 \mathcal{L}_2 $2 / \lambda$. (2 $1 / 1$ 1 $1 / 2 / 2$ $* = \frac{(\bar{x}_1 - \bar{x}_2) - 0}{\sqrt{(\bar{x}_1 - \bar{x}_2)^2}}$ $x - x$ *t* s_1^-/n_1 1 + 1 s_2^-/n $-\lambda_0$ I = + $-t(df$, α / 2)

10.3 Inference Mean Difference Confidence Interval

Example:

Interested in difference in mean heights between men and women. The heights of 20 females and 30 males is measured. Construct a 95% confidence interval for $\mu_{_m}$ – $\mu_{_f}$, $\sigma_{_m}$ & $\sigma_{_f}$ unknown

$$
(\overline{x}_m - \overline{x}_f) \pm t(df, \alpha/2) \sqrt{\left(\frac{s_m^2}{n_m}\right) + \left(\frac{s_f^2}{n_f}\right)}
$$

(69.8 - 63.8) ± 2.09 $\sqrt{\left(\frac{(1.92)^2}{30}\right) + \left(\frac{(2.18)^2}{20}\right)}$ therefore 4.75 to 7.25

therefore 4.75 to 7.25

Figure from Johnson & Kuby, 2012.

10.3 Inference for Mean Difference Two Independent Samples Hypothesis Testing Procedure 27 values

Is the height of males = height of females at $\alpha = 05$?

10: Inferences Involving Two Populations 10.3 Inference for Mean Difference Two Independent Samples Hypothesis Testing Procedure 27 values

10: Inferences Involving Two Populations 10.3 Inference for Mean Difference Two Independent Samples Hypothesis Testing Procedure 27 values

 $P(|t^*| > 6.17) = .0016$ Step 5 $\mathsf{Reject}\ H_0\ .002\!<\! .05\ \ ,\ \mathsf{height}\ \mathsf{males} {\neq}\ \mathsf{height}\ \mathsf{females}$

Chapter 10: Inferences Involving Two Populations

Questions?

Homework: Read Chapter 10.3 WebAssign Chapter 10 # 41, 45, 53, 57, 58, 59, 63

Lecture Chapter 10.4-10.5

Marquette University Recall MATH MATH 1700

9: Inferences Involving One Population

9.2 Inference about the Binomial Probability of Success $_{\text{Chapter 5}}$

We talked about a Binomial experiment with two outcomes. Each performance of the experiment is called a trial. Each trial is independent.

$$
P(x) = \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x}
$$

\n
$$
n = 1, 2, 3, ...
$$

\n
$$
0 \le p \le 1
$$

\n
$$
x = 0, 1 ... , n
$$

n = number of trials or times we repeat the experiment. *x* = the number of successes out of *n* trials. $p =$ the probability of success on an individual trial.

Marquette University Recall MATH MATH MATH MATH 1700

9: Inferences Involving One Population

9.2 Inference about the Binomial Probability of Success

When we perform a binomial experiment we can estimate the probability of heads as

This is a point estimate. Recall the rule for a CI is

point estimate \pm some amount

Background

For Binomial, where *x* is number of successes out of *n* trials. We said that mean(cx) = cnp and variance(cx) = c^2npq . \longrightarrow mean(x/n) = p and variance(x/n) = pq / n. *q*=1-*p*

We are often interested in comparisons between proportions $p_1 - p_2$. There is another rule that says that if x_1 and x_2 are random variables, then mean($x_1 \pm x_2$) = mean(x_1) ± mean(x_2)

further, mean
$$
\left(\frac{x_1}{n_1} \pm \frac{x_2}{n_2}\right)
$$
 = mean $\left(\frac{x_1}{n_1}\right) \pm$ mean $\left(\frac{x_2}{n_2}\right)$
and variance $\left(\frac{x_1}{n_1} \pm \frac{x_2}{n_2}\right)$ = $\frac{p_1q_1}{n_1} + \frac{p_2q_2}{n_2}$.

That is where 1. and 2. in the green box below come from

If independent samples of size n_1 and n_2 are drawn \dots with p_1 = P_1 (success) and p_2 = P_2 (success), then the sampling distribution of $p'_1 - p'_2$ has these properties: 1. mean =

1. mean
$$
\mu_{p'_1-p'_2} = p_1 - p_2
$$

2. standard error $\sigma_{p'_1-p'_2} = \sqrt{\frac{p_1q_1}{n_1} + \frac{p_2q_2}{n_2}}$ (10.10)

3. approximately normal dist if n_1 and n_2 are sufficiently large. ie **I** *n*¹ ,*n*2>20 **II** *n*1*p*¹ , *n*1*q*¹ , *n*2*p*² , *n*2*q*2>5 **III** sample<10% of pop

Assumptions for … difference between two proportions p ₁- p ₂: The n_1 ... and n_2 random observations … are selected independently from two populations that are not changing

Confidence Interval for the Difference between Two Proportions $p_1 \cdot p_2$

$$
(p'_{1} - p'_{2}) - z(\alpha/2) \sqrt{\frac{p'_{1}q'_{1}}{n_{1}} + \frac{p'_{2}q'_{2}}{n_{2}}} \quad \text{to} \quad (p'_{1} - p'_{2}) + z(\alpha/2) \sqrt{\frac{p'_{1}q'_{1}}{n_{1}} + \frac{p'_{2}q'_{2}}{n_{2}}}
$$
\n
$$
\text{where } p'_{1} = \frac{x_{1}}{n_{1}} \quad \text{and } p'_{2} = \frac{x_{2}}{n_{2}}.
$$
\n(10.11)

Rowe, D.B.
$$
q'_1 = 1 - p'_1
$$
 $q'_2 = 1 - p'_2$ 21

Example: Another Semester

Construct a 99% CI for proportion of female A's minus male A's difference $p_f - p_m$. Fill in.

120 values $n_{m} = 52$ 68 $n_f =$ $(p'_{f} - p'_{m}) \pm z(\alpha/2) \sqrt{\frac{P_{f}q_{f}}{m} + \frac{P_{m}q_{m}}{m}}$ *f ^m* $p_f q_f$ *p*^{*n*}*q* $p_{\rm f} - p_{\rm m}$) $\pm z$ *n n* α $p_f - p_m$. Fill in.
 $z(\alpha/2) =$ $(p'_c - p') \pm z(\alpha/2) \frac{p'_f q'_f}{p'_m q'_m} + \frac{p'_m q'_m}{p'_m q'_m}$ *f f f x p n* I , $=$ $=$ *m m m x p n* I $=$ $=$ $=$ $x_{m} = 21$ 43 x_{f} = $z(\alpha / 2) =$

Example: Construct a 99% CI for proportion of female A's minus male A's difference $p_f - p_m$. α = 0.01

 $(p'_{f} - p'_{m}) \pm z(\alpha/2) \sqrt{\frac{P_{f}q_{f}}{m} + \frac{P_{m}q_{m}}{m}}$ *f ^m* $p_f q_f$ *p*^{*n*}*q* $p_{\rm f} - p_{\rm m}$) $\pm z$ *n n* α $p_f - p_m$.
 $z(\alpha/2) = 2.58$ $(p'_c - p') \pm z(\alpha/2) \frac{p'_f q'_f}{p'_m q'_m}$ $\frac{43}{6} = .62$ 68 *f f f x p n* ı , = —– = —– = $\frac{21}{1}$ = .40 52 *m m m x p n* I $z(\alpha / 2) = 2.58$
 $p'_f = \frac{x_f}{n_f} = \frac{43}{68} =$
 $p' = \frac{x_m}{n_f} = \frac{21}{68} =$ 120 values $n_{m} = 52$ $n_{\rm r} = 68$ *f* 21 43 *m f x x* = \overline{z}

52

m

n

Example: Construct a 99% CI for proportion of female A's minus male A's difference $p_f - p_m$ for a previous class. $(p'_{f} - p'_{m}) \pm z(\alpha/2) \sqrt{\frac{P_{f}q_{f}}{m} + \frac{P_{m}q_{m}}{m}}$ *f ^m* $p_f q_f$ *p*^{*n*}*q* $p_{\rm f} - p_{\rm m}$) $\pm z$ *n n* α $p_f - p_m$ for a previous class.
 $z(\alpha/2) = 2.58$ $(p'_c - p') \pm z(\alpha/2)$ $\boxed{p'_f q'_f + p'_m q'_m}$ $z(\alpha/2) = 2.58$ $(.62 - .40) \pm 2.58 \sqrt{\frac{(.62)(.38)}{.62} + \frac{(.40)(.60)}{.62}}$ 68 52 $-$.40) \pm 2.58. $\frac{\sqrt{258}}{1}$ + *α* = 0.01
 CI for proportion of female

for a previous class.
 $(p'_f - p'_m) \pm z(r)$
 $\frac{p_f}{p_f} = \frac{43}{68} = .62$ (.62 − .40) ± 2.:
 $\frac{x_m}{p_f} = \frac{21}{52} = .40$ –.003 to .460 Top 5 of 6 exams. 120 values $n_{m} = 52$ 68 $n_f =$ $x_{m} = 21$ 43 $\frac{43}{6} = .62$ 68 *f f f x p n* ı , = —– = —– = $\frac{21}{1}$ = .40 *m m x p* I = = =

 x_{f} =

10: Inferences Involving Two Populations 10.4 Inference for Difference between Two Proportions Hypothesis Testing Procedure

We can perform hypothesis tests on the proportion $H_0: p_1 \geq p_2$ vs. $H_a: p_1 < p_2$ $H_0: p_1 \leq p_2$ vs. $H_a: p_1 > p_2$ $H_0: p_1 = p_2$ vs. $H_a: p_1 \neq p_2$ when $p_1 = p_2 = p$. Test Statistic for the Difference between two Proportions- 1**7**1 P2**7**2 1 $\binom{n_2}{2}$ $\binom{n_1}{1}$ $\binom{n_2}{2}$ $p_1 q_1 p_2 q_2 1 1 1$ *pq n*₁ *n*₂ *n***₂ ***n***₁** *n***₁** *n***₁** *n* $\begin{bmatrix} 1 & 1 \end{bmatrix}$ $+\frac{P_2T_2}{n_2}=pq\left[\frac{1}{n_1}+\frac{1}{n_2}\right]$

$$
z^* = \frac{(p'_1 - p'_2) - (p_{0,1} - p_{0,2})}{\sqrt{pq \left[\frac{1}{n_1} + \frac{1}{n_2}\right]}}
$$
 O Population Proportions **Known**
\n
$$
p'_1 = \frac{x_1}{n_1} \quad p'_2 = \frac{x_2}{n_2}
$$
 (10.12)
\n**Rowe, D.B.** *p* known

p known

 $p'_{1} - p'_{2}$) – ($p_{0,1} - p_{0,2}$

 $= \frac{(\frac{1}{2})^2 + (\frac{1}{2})^2 + (\frac{1}{2})^2}{\sqrt{\frac{1}{2}p_1^2 + \frac{1}{2}p_2^2}}$

 $* = \frac{1 + \frac{1}{2}, \frac{1}{2}}{\sqrt{n' \cdot n'}}$

 p'_pq

 n_1 n_2

 \overline{p}_p estimated

 $\frac{1}{n_1} + \frac{1}{n_2}$

10: Inferences Involving Two Populations 10.4 Inference for Difference between Two Proportions Hypothesis Testing Procedure

Test Statistic for the Difference between two Proportions-Population Proportions **UnKnown** $(p'_1-p'_2)-(p_{0,1}-p_{0,2})$ $p'_1-p'_2)-(p_{0,1}-p_{0,2})$ $p'_1-p'_2$) – ($p_{0,1}$ – p

0

(10.15)

where we assume $p_1=p_2$ and use pooled estimate of proportion

$$
p_1' = \frac{x_1}{n_1} \quad p_2' = \frac{x_2}{n_2} \qquad \frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2} = pq \left[\frac{1}{n_1} + \frac{1}{n_2} \right] \qquad p_p' = \frac{x_1 + x_2}{n_1 + n_2} \qquad q_p' = 1 - p_p'
$$

z

Is proportion of Salesman's defectives less than Competitor's? $\alpha = .05$

Step 1 Fill in.

Step 2

Step 3

Is proportion of Salesman's defectives less than Competitor's? $\alpha = .05$

*H*₀[:] *p*_s-*p*_c≤0 vs. *H_a*: *p*_s-*p*_c>0 **Step 1 Step 2**

Step 3

Is proportion of Salesman's defectives less than Competitor's? $\alpha = .05$

Step 1
\n
$$
H_0: p_s-p_c \le 0
$$
 vs. $H_a: p_s-p_c > 0$
\nStep 2
\n $z^* = \frac{(p'_s - p'_c) - (p_{0,s} - p_{0,c})}{\sqrt{p'_p q'_p \left[\frac{1}{n_s} + \frac{1}{n_c}\right]}}$
\n $\alpha = .05$

Is proportion of Salesman's defectives less than Competitor's? $\alpha = .05$

Is proportion of Salesman's defectives less than Competitor's? $\alpha = .05$

Is proportion of Salesman's defectives less than Competitor's? $\alpha = .05$

10: Inferences Involving Two Populations 10.5 Inference for Ratio of Two Variances Two Ind. Samples Hypothesis Testing Procedure

We can perform hypothesis tests on two variances

 H_0 : $\sigma_1^2 \geq \sigma_2^2$ vs. H_a :c H_0 : $\sigma_1^2 \leq \sigma_2^2$ vs. H_a :c $H_0: \sigma_1^2 = \sigma_2^2$ vs. H_a :c $\sigma_1^2 \geq \sigma_2^2$ vs. H_a : $\sigma_1^2 < \sigma_2^2$ $\sigma_1^2 \leq \sigma_2^2$ vs. H_a : $\sigma_1^2 > \sigma_2^2$ σ_1^- = $\sigma_2^ \sigma_1^2$ \leq σ_2^2 $\sigma_1^2 > \sigma_2^2$ 2 2 $\sigma_1^2 \neq \sigma_2^2$

Assumptions: Independent samples from normal distribution

F

Test Statistic for Equality of Variances

$$
F^* = \frac{s_n^2}{s_d^2}
$$

Test Statistic for Equality of Variances
\n
$$
F^* = \frac{\int_{s_a}^{s_a} (n_a - 1)s_a^2/\sigma^2}{\int_{s_a}^{s_a} (n_a - 1)s_a^2/\sigma^2}
$$
\n
$$
F^* = \frac{s_a^2}{s_a^2}
$$
\nwith $df_n = n_n - 1$ and $df_d = n_d - 1$. (10
\nUse new table to find areas for new statistic.

 S_d (10.16)

2 2 $* = \frac{\left[(n_n - 1)s_n^2 / \sigma^2 \right] / (n_n - 1)}{\left[(n_d - 1)s_d^2 / \sigma^2 \right] / (n_d - 1)}$ *n* / *n*₁ – 1 \ *n*

σ $=\frac{\left[(n_n-1)s_n^2/\sigma^2 \right] / (n_n-1)}{\left[(n_d-1)s_d^2/\sigma^2 \right] / (n_d-1)}$

σ

n -1 *s i o* 1/1*n*

Actually \leftarrow ignore

 $n_i - 1$)*S*, 1σ 1/1*n*

d d d

2

2

d

n

s

s

*

F

10: Inferences Involving Two Populations 10.5 Inference for Ratio of Two Variances Two Ind. Samples Hypothesis Testing Procedure

Test Statistic for Equality of Variances

$$
F^* = \frac{S_n}{r^2}
$$
 with $df_n = n_n - 1$ and $df_d = n_d - 1$. (10.16)

Will also need critical values. $P(F > F(df_n, df_d, \alpha)) = \alpha$

Table 9 Appendix B Page 722

 $F(\mathrm{df}_n, \mathrm{df}_d, \alpha)$

 \boldsymbol{F}

$$
df_n = n_n - 1
$$
 $df_d = n_d - 1$
Table 9, Appendix B, Page 722.

df n

 Ω

Figures from Johnson & Kuby, 2012.

 α = 0.05

10: Inferences Involving Two Populations 10.5 Inference for Ratio of Two Variances Two Ind. Samples Hypothesis Testing Procedure \bigstar

One tailed tests: Arrange H_0 & H_a so H_a is always "greater than" $H_0: \sigma_1^2 \ge \sigma_2^2$ vs. $H_a: \sigma_1^2 < \sigma_2^2 \rightarrow H_0: \sigma_2^2 / \sigma_1^2 \le 1$ vs. $H_a:$ $H_0: \sigma_1^2 \leq \sigma_2^2$ vs. $H_a: \sigma_1^2 > \sigma_2^2 \rightarrow H_0: \sigma_1^2 / \sigma_2^2 \leq 1$ vs. $H_a:$ $\text{Reject } H_0 \text{ if } F^* = s_n^2 / s_d^2 > F(df_n, df_d, \alpha).$ 2 2 $1 \cdot 2$ 2 2 $1 - 2$ σ_{1}^{-} $<$ σ_{1}^{-} $\sigma_{1} > \sigma_{1}$ \lt $\rm >$ $2, 2$ 2 \cdot \cdot 1 $2, 2$ 1 \cdot \cdot 2 $\sigma_1^2 \leq 1$ $\sigma_{\rm o}^2 \leq 1$ σ_{\circ} / σ σ^- / σ \leq \leq $2, 2$ 2 \cdot \cdot 1 $2, 2$ 1 \cdot \cdot 2 $\sigma_{1}^{2}>1$ $\sigma_{\rm o}^2 > 1$ σ_{\circ} / σ σ^- / σ $\rm >$ $\rm >$ 2 2 $1 - 2$ 2 2 $1 - 2$ $\sigma^-_1 \geq \sigma^-_1$ $\sigma^{-} \leq \sigma$ \geq \leq 2 1 2 2 * $F^* =$ ^S *s* = 2 2 2 1 * $F^* =$ ^S *s* =

Two tailed tests: put larger sample variance s^2 in numerator $H_0: \sigma_1^2 = \sigma_2^2$ vs. $H_a: \sigma_1^2 \neq \sigma_2^2 \rightarrow H_0: \sigma_n^2 / \sigma_d^2 = 1$ vs. $H_a: \sigma_1^2 \neq \sigma_2^2$ $\sigma_n^2 = \sigma_1^2$ if $s_1^2 > s_2^2$, $\sigma_n^2 = \sigma_2^2$ if = $\sigma_1^2 \neq \sigma_2^2 \rightarrow H_0: \sigma_n^2 / \sigma_d^2 = 1$ $=$ 1 vs. H_a : $\sigma_n^2 / \sigma_d^2 \neq 1$ $s_1^2 > s_2^2$ $\sigma_n^2 = \sigma_1^2$ = 2 2 $s_2^2 > s_1^2$ $\sigma_n^2 = \sigma_2^2$ =

Reject H_0 if $F^* = s_n^2 / s_d^2 > F(df_n, df_d, \alpha/2)$.

Step 1 Fill in. Is variance of female heights greater than that of males? α = 01 27 values

Step 4 Step 3 Step 2

Step 5

Step 1 Is variance of female heights greater than that of males? α = 01 27 values

 $H_0: \sigma_f^2 \leq \sigma_m^2$ vs. $H_a: \sigma_f^2 > \sigma_m^2$ H_0 : $\sigma_f^2\left/\sigma_{\scriptscriptstyle m}^2\right. \leq 1$ vs. H_a : $\sigma_f^2\left/\sigma_{\scriptscriptstyle m}^2\right. \! > 1$

Step 2 ²

Step 3

Step 4

Step 5

Step 1 Is variance of female heights greater than that of males? α = 01 27 values

 $H_0: \sigma_f^2 \leq \sigma_m^2$ vs. $H_a: \sigma_f^2 > \sigma_m^2$ H_0 : $\sigma_f^2\left/\sigma_{\scriptscriptstyle m}^2\right. \leq 1$ vs. H_a : $\sigma_f^2\left/\sigma_{\scriptscriptstyle m}^2\right. \! > 1$

Step 2 2 $^* = \frac{f}{2}$ *f m s F s* = df _f = 20
 α = .01 $df_{m} = 5$

Step 3

Step 4

Step 1 Is variance of female heights greater than that of males? α = 01 27 values

 $H_0: \sigma_f^2 \leq \sigma_m^2$ vs. $H_a: \sigma_f^2 > \sigma_m^2$ H_0 : $\sigma_f^2\left/\sigma_{\scriptscriptstyle m}^2\right. \leq 1$ vs. H_a : $\sigma_f^2\left/\sigma_{\scriptscriptstyle m}^2\right. \! > 1$

Step 2 df _f = 20
 α = .01 2 \angle $df_{m} = 5$ $^* = \frac{f}{2}$ *f m s F s* =

Step 4 Step 3 $F^* = 14.0 / 2.4 = 5.83$

Step 5

Step 1 Is variance of female heights greater than that of males? α = 01 27 values

 $H_0: \sigma_f^2 \leq \sigma_m^2$ vs. $H_a: \sigma_f^2 > \sigma_m^2$ H_0 : $\sigma_f^2\left/\sigma_{\scriptscriptstyle m}^2\right. \leq 1$ vs. H_a : $\sigma_f^2\left/\sigma_{\scriptscriptstyle m}^2\right. \! > 1$

Step 2 $\alpha = .01$ $df_{_f} = 20$ 2 \angle $df_{m} = 5$ $^* = \frac{f}{2}$ *f m s F s* =

Step 3

Step 4 $F^* = 14.0 / 2.4 = 5.83$

$$
F(20,5,01) = 9.55
$$

Step 5

Step 1 Is variance of female heights greater than that of males? α = 01 27 values

Chapter 10: Inferences Involving Two Populations

Questions?

Homework: Read Chapter 10.4-10.5 WebAssign Chapter 10# 83, 85, 91, 98, 99, 101, 111, 113, 115, 117, 119, 125, 133

