MATH 1700

Class 22

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

Be The Difference.

Copyright by D.B. Rowe

Agenda:

Recap Chapter 10.2-10.3

Lecture Chapter 10.4-10.5

Recap Chapter 10.2-10.3

10: Inferences Involving Two Populations 10.2 Inference for Mean Difference Two Dependent Samples

Confidence Interval Procedure

Paired Difference

(10.1)

$$\overline{d} = \frac{1}{n} \sum_{i=1}^{n} d_{i} \qquad s_{d}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (d_{i} - \overline{d})^{2} \qquad \mu_{\overline{d}} = \mu_{d} \quad \sigma_{\overline{d}} = \frac{\sigma_{d}}{\sqrt{n}}$$

 $d = x_1 - x_2$

With σ_d unknown, a 1- α confidence interval for $\mu_d = (\mu_1 - \mu_2)$ is:

Confidence Interval for Mean Difference (Dependent Samples)

$$\overline{d} - t(df, \alpha/2) \frac{s_d}{\sqrt{n}}$$
 to $\overline{d} + t(df, \alpha/2) \frac{s_d}{\sqrt{n}}$ where $df = n-1$ (10.2)

10: Inferences Involving Two Populations

10.2 Inference for Mean Difference Two Dependent Samples

	Car	1	2	3	4	5	6
	Brand A Brand B	125 133	64 65	94 103	38 37	90 102	106
Example						102	
	t a 95% CI	for mea	n differ	ence in	Brand E	3 – A tire	wear.
<i>d</i> _{<i>i</i>} 's: 8, 1,	9, -1, 12, 9				$\overline{d} =$	$\frac{1}{n}\sum_{i=1}^{n}d_{i}$	
<i>n</i> = 6	df = 5	$t(df \alpha / 2)$) - 257		<i>u</i> –	$n\sum_{i=1}^{n}a_i$	
$\overline{d} = 6.3$	df = 5 $\alpha = 0.05$	$I(aj, \alpha \mid z)$) = 2.37		s^{2} —	$=\frac{1}{n-1}\sum_{i=1}^{n}(a_{i})$	$(\overline{d})^2$
					S_d –	$\frac{1}{n-1}\sum_{i=1}^{n-1} (c)$	$l_i - d$
$s_d = 5.1$	$\overline{d} \pm t(df, df)$	$(\chi / 2) - \frac{S_d}{\sqrt{2}} - \frac{S_d}{\sqrt{2}}$	→ (0.0	90,11.7)			
		\sqrt{n}					

10: Inferences Involving Two Populations

10.2 Inference for Mean Difference Two Dependent Samples

n = 6 8, 1, 9, -1, 12, 9

	Car	1	2	3	4	5	6
Example:	Brand A	125	64	94	38	90	106
	Brand B	133	65	103	37	102	115

Test mean difference of Brand B minus Brand A is zero.

Step 1 $H_0: \mu_d = 0$ vs. $H_a: \mu_d \neq 0$ Step 2 df = 5 $t^* = \frac{\overline{d} - \mu_{d0}}{s_d / \sqrt{n}}$ Step 3 $\overline{d} = 6.3$ $t^* = \frac{6.3 - 0}{5.1 / \sqrt{6}} = 3.03$ Step 4 $t(df, \alpha / 2) = 2.57$

Conclusion: Significant difference in tread wear at .05 level.

Figures from Johnson & Kuby, 2012.

10: Inferences Involving Two Populations 10.3 Inference for Mean Difference Two Independent Samples Confidence Interval Procedure

With σ_1 and σ_2 unknown, a 1- α confidence interval for $\mu_1 - \mu_2$ is: **Confidence Interval for Mean Difference (Independent** Samples) $(\overline{x}_1 - \overline{x}_2) - t(df, \alpha/2) \sqrt{\left(\frac{s_1^2}{n_1}\right) + \left(\frac{s_2^2}{n_2}\right)} \text{ to } (\overline{x}_1 - \overline{x}_2) + t(df, \alpha/2) \sqrt{\left(\frac{s_1^2}{n_1}\right) + \left(\frac{s_2^2}{n_2}\right)}$ where df is either calculated or smaller of df_1 , or df_2 (10.8)Actually, this is for $\sigma_1 \neq \sigma_2$. Next larger number than $df = \left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2 / \left(\frac{\left(s_1^2 / n_1\right)^2}{n_1 - 1} + \frac{\left(s_2^2 / n_2\right)^2}{n_2 - 1}\right)$ If using a computer program. If not using a computer program.

- 9: Inferences Involving One Population
- 9.2 Inference about the Binomial Probability of Success

- 9: Inferences Involving One Population
- 9.2 Inference about the Binomial Probability of Success

- 9: Inferences Involving One Population
- 9.2 Inference about the Binomial Probability of Success
 - There are three possible hypothesis pairs for the difference in means. Critical Non-Critical Critical $H_0: \mu_1 - \mu_2 = 0$ vs. $H_a: \mu_1 - \mu_2 \neq 0$ Region Region Region Reject H_0 if less than Reject Fail to Reject Reject $t^{*} = \frac{(\overline{x_{1}} - \overline{x_{2}}) - 0}{\sqrt{\left(s_{1}^{2}/n_{1}\right) + \left(s_{2}^{2}/n_{2}\right)}} \quad -t(df, \alpha/2)$ or if $t^{*} = \frac{(\overline{x_{1}} - \overline{x_{2}}) - 0}{\sqrt{\left(s_{1}^{2}/n_{1}\right) + \left(s_{2}^{2}/n_{2}\right)}} \quad \text{is greater that}$ $t(df, \alpha/2)$ is greater than $t^* CV$ data indicates $\mu_1 - \mu_2 \neq 0$, $\overline{x}_1 - \overline{x}_2$ *CV t* * 0 far from 0.

10: Inferences Involving Two Populations

10.3 Inference Mean Difference Confidence Interval

Sample	Number	Mean	Standard Deviation
Female (f) Male (m)	$n_f = 20 \\ n_m = 30$	$\overline{x}_f = 63.8$ $\overline{x}^f = 69.8$	$s_f = 2.18$ $s_f = 1.92$

Example:

Interested in difference in mean heights between men and women. The heights of 20 females and 30 males is measured. Construct a 95% confidence interval for $\mu_m - \mu_f$, $\sigma_m \& \sigma_f$ unknown

$$(\overline{x}_{m} - \overline{x}_{f}) \pm t(df, \alpha / 2) \sqrt{\left(\frac{s_{m}^{2}}{n_{m}}\right) + \left(\frac{s_{f}^{2}}{n_{f}}\right)} + (69.8 - 63.8) \pm 2.09 \sqrt{\left(\frac{(1.92)^{2}}{30}\right) + \left(\frac{(2.18)^{2}}{20}\right)}$$

 $\alpha = 0.05$ t(19,.025) = 2.09

therefore 4.75 to 7.25

Figure from Johnson & Kuby, 2012.

10: Inferences Involving Two Populations

10.3 Inference for Mean Difference Two Independent Samples Hypothesis Testing Procedure 27 values

Is the height of males = height of females at α =.05?

10: Inferences Involving Two Populations10.3 Inference for Mean Difference Two Independent SamplesHypothesis Testing Procedure27 values

0.025

2.57

0.025

-2.57

Rowe, D.B.

0.95

13

10: Inferences Involving Two Populations10.3 Inference for Mean Difference Two Independent SamplesHypothesis Testing Procedure27 values

 $P(|t^*|>6.17) = .0016$ Step 5 Reject H_0 .002 < .05 , height males≠height females

Chapter 10: Inferences Involving Two Populations

Questions?

Homework: Read Chapter 10.3 WebAssign Chapter 10 # 41, 45, 53, 57, 58, 59, 63

Lecture Chapter 10.4-10.5

Marquette University Recall

MATH 1700

9: Inferences Involving One Population

9.2 Inference about the Binomial Probability of Success Chapter 5

We talked about a Binomial experiment with two outcomes. Each performance of the experiment is called a trial. Each trial is independent.

$$P(x) = \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x} \qquad \begin{array}{l} n = 1, 2, 3, \dots \\ 0 \le p \le 1 \\ x = 0, 1, \dots, n \end{array}$$

n = number of trials or times we repeat the experiment. x = the number of successes out of n trials. p = the probability of success on an individual trial.

Marquette University Recall

- 9: Inferences Involving One Population
- 9.2 Inference about the Binomial Probability of Success

When we perform a binomial experiment we can estimate the probability of heads as

This is a point estimate. Recall the rule for a CI is

point estimate ± some amount

Background

For Binomial, where x is number of successes out of n trials. We said that mean(cx) = cnp and $variance(cx) = c^2npq$. $\rightarrow mean(x / n) = p$ and variance(x / n) = pq / n. q=1-p

We are often interested in comparisons between proportions $p_1 - p_2$. There is another rule that says that if x_1 and x_2 are random variables, then mean $(x_1 \pm x_2) = mean(x_1) \pm mean(x_2)$

further, mean
$$\left(\frac{x_1}{n_1} \pm \frac{x_2}{n_2}\right) = \text{mean}\left(\frac{x_1}{n_1}\right) \pm \text{mean}\left(\frac{x_2}{n_2}\right)$$

and variance $\left(\frac{x_1}{n_1} \pm \frac{x_2}{n_2}\right) = \frac{p_1q_1}{n_1} + \frac{p_2q_2}{n_2}$.

That is where 1. and 2. in the green box below come from

If independent samples of size n_1 and n_2 are drawn ... with $p_1=P_1$ (success) and $p_2=P_2$ (success), then the sampling distribution of $p'_1 - p'_2$ has these properties: 1. mean $\mu_{p'_1-p'_2} = p_1 - p_2$

2. standard error
$$\sigma_{p_1'-p_2'} = \sqrt{\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2}}$$
 (10.10)

3. approximately normal dist if n_1 and n_2 are sufficiently large. ie I $n_1, n_2 > 20$ II $n_1p_1, n_1q_1, n_2p_2, n_2q_2 > 5$ III sample<10% of pop

Assumptions for ... difference between two proportions p_1-p_2 : The n_1 ... and n_2 random observations ... are selected independently from two populations that are not changing

Confidence Interval for the Difference between Two Proportions $p_1 \cdot p_2$

$$(p_{1}'-p_{2}')-z(\alpha/2)\sqrt{\frac{p_{1}'q_{1}'}{n_{1}}+\frac{p_{2}'q_{2}'}{n_{2}}} \text{ to } (p_{1}'-p_{2}')+z(\alpha/2)\sqrt{\frac{p_{1}'q_{1}'}{n_{1}}+\frac{p_{2}'q_{2}'}{n_{2}}}$$

where $p_{1}'=\frac{x_{1}}{n_{1}}$ and $p_{2}'=\frac{x_{2}}{n_{2}}$. (10.11)

$$q_1' = 1 - p_1' \quad q_2' = 1 - p_2'$$
 21

Example: Another Semester

Construct a 99% CI for proportion of female A's minus male A's difference $p_f - p_m$. Fill in.

120 values $z(\alpha/2) = (p'_f - p'_m) \pm z(\alpha/2) \sqrt{\frac{p'_f q'_f}{n_f} + \frac{p'_m q'_m}{n_m}}{\frac{n_m}{n_m}}$ $n_f = 68$ $p'_f = \frac{x_f}{n_f} = \frac{x_m}{n_f}$ $x_m = 21$ $p'_m = \frac{x_m}{n_m} = \frac{x_m}{n_m}$

Example: a = 0.01Construct a 99% CI for proportion of female A's minus male A's difference $p_f - p_m$.

120 values
$$z(\alpha/2) = 2.58$$
 $(p'_f - p'_m) \pm z(\alpha/2) \sqrt{\frac{p'_f q'_f}{n_f} + \frac{p'_m q'_m}{n_m}}{\frac{n_f}{n_f} = 68}$
 $n_f = 68$ $p'_f = \frac{x_f}{n_f} = \frac{43}{68} = .62$
 $x_m = 21$ $p'_m = \frac{x_m}{n_m} = \frac{21}{52} = .40$

Example: a = 0.01 Top 5 of 6 exams. Construct a 99% CI for proportion of female A's minus male A's difference $p_f - p_m$ for a previous class. 120 values $z(\alpha/2) = 2.58$ $(p'_f - p'_m) \pm z(\alpha/2) \sqrt{\frac{p'_f q'_f}{n_f} + \frac{p'_m q'_m}{n_m}}{\frac{120}{n_f} + \frac{120}{n_m}}$ $n_m = 52$ $(.62 - .40) \pm 2.58 \sqrt{\frac{(.62)(.38)}{68} + \frac{(.40)(.60)}{52}}$

$$x_m = 21$$

 $x_f = 43$ $p'_m = \frac{x_m}{n_m} = \frac{21}{52} = .40$ -.003 to .460

25

10: Inferences Involving Two Populations 10.4 Inference for Difference between Two Proportions Hypothesis Testing Procedure

We can perform hypothesis tests on the proportion $\frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2} = pq \left| \frac{1}{n_1} + \frac{1}{n_2} \right|$ $H_0: p_1 \ge p_2$ vs. $H_a: p_1 < p_2$ $H_0: p_1 \le p_2$ vs. $H_a: p_1 > p_2$ when $p_1 = p_2 = p_1$. $H_0: p_1 = p_2$ VS. $H_a: p_1 \neq p_2$ Test Statistic for the Difference between two Proportions $z^{*} = \frac{(p_{1}' - p_{2}') - (p_{0,1} - p_{0,2})}{\sqrt{pq\left[\frac{1}{n_{1}} + \frac{1}{n_{2}}\right]}} \quad Population$ Population Proportions Known (10.12)

Rowe, D.B.

p known

10: Inferences Involving Two Populations 10.4 Inference for Difference between Two Proportions Hypothesis Testing Procedure

Test Statistic for the Difference between two Proportions-Population Proportions UnKnown $z^{*} = \frac{(p_{1}' - p_{2}') - (p_{0,1} - p_{0,2})}{\sqrt{p_{p}' q_{p}' \left[\frac{1}{n_{1}} + \frac{1}{n_{2}}\right]}}$ $\sum_{p_{p} \text{ estimated } - ---$

where we assume $p_1 = p_2$ and use pooled estimate of proportion

$$p_1' = \frac{x_1}{n_1} \quad p_2' = \frac{x_2}{n_2} \qquad \frac{p_1 q_1}{n_1} + \frac{p_2 q_2}{n_2} = pq \left[\frac{1}{n_1} + \frac{1}{n_2}\right] \qquad \psi = \frac{x_1 + x_2}{n_1 + n_2} \qquad q_p' = 1 - p_p'$$

Is proportion of Salesman's defectives less than Competitor's? $\alpha = .05$

Step 1 Fill in.

Step 2

Product	Number Defective	Number Checked
Salesperson's	$x_s = 15$	$n_s = 150$
Competitor's	$x_c = 6$	$n_c = 150$

Step 3

Step 4

Figure from Johnson & Kuby, 2012.

Is proportion of Salesman's defectives less than Competitor's? $\alpha = .05$

Step 1 $H_0: p_s - p_c \le 0$ vs. $H_a: p_s - p_c > 0$ Step 2

Product	Number Defective	Number Checked
Salesperson's	$x_s = 15$	$n_s = 150$
Competitor's	$x_c = 6$	$n_c = 150$

Step 3

Step 4

Is proportion of Salesman's defectives less than Competitor's? $\alpha = .05$

Step 1

$$H_0: p_s - p_c \le 0 \text{ vs. } H_a: p_s - p_c > 0$$

Step 2
 $z^* = \frac{(p'_s - p'_c) - (p_{0,s} - p_{0,c})}{\sqrt{p'_p q'_p \left[\frac{1}{n_s} + \frac{1}{n_c}\right]}}$
 $\alpha = .05$
Step 3

Product	Number Defective	Number Checked
Salesperson's	$x_s = 15$	$n_s = 150$
Competitor's	$x_c = 6$	$n_c = 150$

Step 4

Is proportion of Salesman's defectives less than Competitor's? $\alpha = .05$

Is proportion of Salesman's defectives less than Competitor's? $\alpha = .05$

Is proportion of Salesman's defectives less than Competitor's? $\alpha = .05$

 $H_0: \sigma_1^2 \ge \sigma_2^2$ vs. $H_a: \sigma_1^2 < \sigma_2^2$

 $H_0: \sigma_1^2 \leq \sigma_2^2$ vs. $H_a: \sigma_1^2 > \sigma_2^2$

 $H_0: \sigma_1^2 = \sigma_2^2$ vs. $H_a: \sigma_1^2 \neq \sigma_2^2$

10: Inferences Involving Two Populations 10.5 Inference for Ratio of Two Variances Two Ind. Samples Hypothesis Testing Procedure

We can perform hypothesis tests on two variances

Assumptions: Independent samples from normal distribution

Test Statistic for Equality of Variances

with
$$df_n = n_n - 1$$
 and $df_d = n_d - 1$

(10.16)

Actually ← ignore

 $F^{*} = \frac{\left[(n_{n} - 1)s_{n}^{2} / \sigma^{2} \right] / (n_{n} - 1)}{\left[(n_{d} - 1)s_{d}^{2} / \sigma^{2} \right] / (n_{d} - 1)}$

Use new table to find areas for new statistic.

Rowe, D.B.

 $F^* = \frac{s_n^2}{s_d^2}$

MATH 1700

10: Inferences Involving Two Populations 10.5 Inference for Ratio of Two Variances Two Ind. Samples

10: Inferences Involving Two Populations 10.5 Inference for Ratio of Two Variances Two Ind. Samples Hypothesis Testing Procedure

Test Statistic for Equality of Variances

with
$$df_n = n_n - 1$$
 and $df_d = n_d - 1$. (10.16)

Will also need critical values. $P(F > F(df_n, df_d, \alpha)) = \alpha$

Table 9 Appendix B Page 722

 $F^* = \frac{S_n^2}{S_n^2}$

F

Table 9, Appendix B, Page 722.

Degrees of Freedom for Numerator df_n

	<i>N</i> 0.0			<u> </u>							
p J		1	2	3	4	5	6	7	8	9	10
for Denominator df_d	1 2 3 4 5	161. 18.5 10.1 7.71 6.61	200. 19.0 9.55 6.94 5.79	216. 19.2 9.28 6.59 5.41	225. 19.2 9.12 6.39 5.19	230. 19.3 9.01 6.26 5.05	234. 19.3 8.94 6.16 4.95	237. 19.4 8.89 6.09 4.88	239. 19.4 8.85 6.04 4.82	241. 19.4 8.81 6.00 4.77	242. 19.4 8.79 5.96 4.74
Degrees of Freedom	6 7 8 9 10	5.99 5.59 5.32 5.12 4.96	5.14 4.74 4.46 4.26 4.10	4.76 4.35 4.07 3.86 3.71	4.53 4.12 3.84 3.63 3.48	4.39 3.97 3.69 3.48 3.33	4.28 3.87 3.58 3.37 3.22	4.21 3.79 3.50 3.29 3.14	4.15 3.73 3.44 3.23 3.07	4.10 3.68 3.39 3.18 3.02	4.06 3.64 3.35 3.14 2.98
								Eiguro	a from Joh	ncon & Kul	2012

Figures from Johnson & Kuby, 2012.

 $\alpha = 0.05$

10: Inferences Involving Two Populations 10.5 Inference for Ratio of Two Variances Two Ind. Samples Hypothesis Testing Procedure

One tailed tests: Arrange H_0 & H_a so H_a is always "greater than" $H_0: \sigma_1^2 \ge \sigma_2^2$ VS. $H_a: \sigma_1^2 < \sigma_2^2 \rightarrow H_0: \sigma_2^2 / \sigma_1^2 \le 1$ VS. $H_a: \sigma_2^2 / \sigma_1^2 > 1$ $F^* = \frac{s_2^2}{s_p^2}$ $H_0: \sigma_1^2 \le \sigma_2^2$ VS. $H_a: \sigma_1^2 > \sigma_2^2 \rightarrow H_0: \sigma_1^2 / \sigma_2^2 \le 1$ VS. $H_a: \sigma_1^2 / \sigma_2^2 > 1$ $F^* = \frac{s_1^2}{s_2^2}$ Reject H_0 if $F^* = s_n^2 / s_d^2 > F(df_n, df_d, \alpha)$.

Two tailed tests: put larger sample variance s^2 in numerator $H_0: \sigma_1^2 = \sigma_2^2$ vs. $H_a: \sigma_1^2 \neq \sigma_2^2 \rightarrow H_0: \sigma_n^2 / \sigma_d^2 = 1$ vs. $H_a: \sigma_n^2 / \sigma_d^2 \neq 1$ $\sigma_n^2 = \sigma_1^2$ if $s_1^2 > s_2^2$, $\sigma_n^2 = \sigma_2^2$ if $s_2^2 > s_1^2$

Reject H_0 if $F^* = s_n^2 / s_d^2 > F(df_n, df_d, \alpha/2)$.

Is variance of female heights greater than that of males? $\alpha = .01$ 27 values Step 1 Fill in.

Step 2 Step 3

Step 4

Step 5

Is variance of female heights greater than that of males? $\alpha = .01$ 27 values Step 1

 $H_0: \sigma_f^2 \le \sigma_m^2 \text{ vs. } H_a: \sigma_f^2 > \sigma_m^2$ $H_0: \sigma_f^2 / \sigma_m^2 \le 1 \text{ vs. } H_a: \sigma_f^2 / \sigma_m^2 > 1$

Step 2

Step 3

Step 4

Is variance of female heights greater than that of males? $\alpha = .01$ 27 values Step 1

 $H_0: \sigma_f^2 \le \sigma_m^2 \text{ vs. } H_a: \sigma_f^2 > \sigma_m^2$ $H_0: \sigma_f^2 / \sigma_m^2 \le 1 \text{ vs. } H_a: \sigma_f^2 / \sigma_m^2 > 1$

Step 2 $F^* = \frac{s_f^2}{s_m^2} \qquad df_m = 5$ $df_f = 20$ $\alpha = .01$

Step 3

Step 4

Step 5

Is variance of female heights greater than that of males? $\alpha = .01$ 27 values Step 1

 $H_0: \sigma_f^2 \le \sigma_m^2 \text{ vs. } H_a: \sigma_f^2 > \sigma_m^2$ $H_0: \sigma_f^2 / \sigma_m^2 \le 1 \text{ vs. } H_a: \sigma_f^2 / \sigma_m^2 > 1$

Step 2 $F^* = \frac{s_f^2}{s_m^2} \qquad df_m = 5$ $df_f = 20$ $\alpha = .01$

Step 3 Step 4 $F^* = 14.0 / 2.4 = 5.83$

Step 5

Is variance of female heights greater than that of males? $\alpha = .01$ 27 values Step 1

 $H_0: \sigma_f^2 \le \sigma_m^2 \text{ vs. } H_a: \sigma_f^2 > \sigma_m^2$ $H_0: \sigma_f^2 / \sigma_m^2 \le 1 \text{ vs. } H_a: \sigma_f^2 / \sigma_m^2 > 1$

Step 2 $F^* = \frac{s_f^2}{s_m^2} \qquad df_m = 5$ $df_f = 20$ $\alpha = .01$

Step 3

Step 4
$$F^* = 14.0 / 2.4 = 5.83$$

$$F(20,5,.01) = 9.55$$

Step 5

Is variance of female heights greater than that of males? $\alpha = .01$ 27 values Step 1

Chapter 10: Inferences Involving Two Populations

Questions?

Homework: Read Chapter 10.4-10.5 WebAssign Chapter 10# 83, 85, 91, 98, 99, 101, 111, 113, 115, 117, 119, 125, 133

