MATH 1700

Class 21

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

Be The Difference.

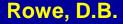
Copyright by D.B. Rowe

Agenda:

Recap Chapter 10.1 and 10.2

Lecture Chapter 10.3

Recap Chapter 10.1 and 10.2



Paired Difference

(10.1)

10: Inferences Involving Two Populations 10.2 Inference for Mean Difference Two Dependent Samples

We form a paired difference from the data

This means that we are subtracting the sample value from

 $d = x_1 - x_2$

population 2 from the sample value from population 1.

10: Inferences Involving Two Populations 10.2 Inference for Mean Difference Two Dependent Samples

So if the d_i 's are approximately normally distributed

with a mean of μ_d and a standard deviation of σ_d , then

 $\overline{d} = \frac{1}{n} \sum_{i=1}^{n} d_i$ is normally distributed (recall CLT)

with a mean $\mu_{\bar{d}} = \mu_d$, and standard deviation $\sigma_{\bar{d}} = \frac{\sigma_d}{\sqrt{n}}$.

10: Inferences Involving Two Populations 10.2 Inference for Mean Difference Two Dependent Samples

This would allow us to form a z statistic for the mean of

differences \overline{d} , $z = \frac{\overline{d} - \mu_d}{\sigma_d / \sqrt{n}}$ with a standard normal distribution. We can then look up probabilities in the table,

find critical values $z(\alpha/2)$, construct confidence intervals

$$\overline{d} \pm z(\alpha/2) \frac{\sigma_d}{\sqrt{n}}$$

and test hypotheses using
$$z^* = \frac{\overline{d} - \mu_{0d}}{\sigma_d / \sqrt{n}}$$

Figure from Johnson & Kuby, 2012.

10: Inferences Involving Two Populations 10.2 Inference for Mean Difference Two Dependent Samples

- However, as in Inferences for One Population, we never
- know the true value of σ_d . So we estimate it with sample
- standard deviation s_d . This changes $z = \frac{\overline{d} \mu_d}{\sigma_d / \sqrt{n}}$ to $t = \frac{\overline{d} \mu_d}{s_d / \sqrt{n}}$ and the distribution from standard normal

to Student *t* with df = n-1 where $s_d^2 = \frac{1}{n-1} \sum_{i=1}^n (d_i - \overline{d})^2$.

10: Inferences Involving Two Populations 10.2 Inference for Mean Difference Two Dependent Samples Confidence Interval Procedure

With σ_d unknown, a 1- α confidence interval for μ_d is:

Confidence Interval for Mean Difference (Dependent Samples)

$$\overline{d} - t(df, \alpha/2) \frac{s_d}{\sqrt{n}}$$
 to $\overline{d} + t(df, \alpha/2) \frac{s_d}{\sqrt{n}}$ where $df = n-1$ (10.2)

$$\overline{d} = \frac{1}{n} \sum_{i=1}^{n} d_i$$
 (10.3) $s_d^2 = \frac{1}{n-1} \sum_{i=1}^{n} (d_i - \overline{d})^2$ (10.4)

10: Inferences Involving Two Populations

10.2 Inference for Mean Difference Two Dependent Samples

Car	1	2	3	4	5	6
Brand A	125	64	94	38	90	106
Brand B	133	65	103	37	102	115

Example:

d's: 8, 1, 9, -1, 12, 9

Construct a 95% CI for mean difference in Brand B – A tire wear.

$$n = 6$$

$$df = 5$$

$$df = 5$$

$$df, \alpha / 2) = 2.57$$

$$s_d = 5.1$$

$$\bar{d} \pm t(df, \alpha / 2) \frac{s_d}{\sqrt{n}} \longrightarrow (0.090, 11.7)$$

$$\overline{d} = \frac{1}{n} \sum_{i=1}^{n} d_i$$

$$s_d^2 = \frac{1}{n-1} \sum_{i=1}^{n} (d_i - \overline{d})^2$$

Figure from Johnson & Kuby, 2012.

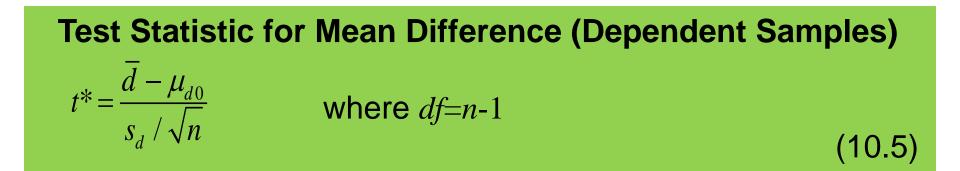
We can test for differences in the population means:

$$\begin{split} H_{0}: \mu_{1} \geq \mu_{2} \ \forall \text{S.} \ H_{a}: \mu_{1} < \mu_{2} & \to & H_{0}: \mu_{1} - \mu_{2} \geq 0 \ \forall \text{S.} \ H_{a}: \mu_{1} - \mu_{2} < 0 \\ H_{0}: \mu_{1} \leq \mu_{2} \ \forall \text{S.} \ H_{a}: \mu_{1} > \mu_{2} & \to & H_{0}: \mu_{1} - \mu_{2} \leq 0 \ \forall \text{S.} \ H_{a}: \mu_{1} - \mu_{2} > 0 \\ H_{0}: \mu_{1} = \mu_{2} \ \forall \text{S.} \ H_{a}: \mu_{1} \neq \mu_{2} & \to & H_{0}: \mu_{1} - \mu_{2} = 0 \ \forall \text{S.} \ H_{a}: \mu_{1} - \mu_{2} \neq 0 \\ \mu_{d} = \mu_{1} - \mu_{2} & \to & H_{0}: \mu_{d} \geq 0 \ \forall \text{S.} \ H_{a}: \mu_{d} < 0 \end{split}$$

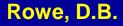
$$(\mu_d = \mu_{before} - \mu_{after}) \qquad H_0: \mu_d \le 0 \text{ vs. } H_a: \mu_d > 0$$

 $H_0: \mu_d = 0$ vs. $H_a: \mu_d \neq 0$

With σ_d unknown, the test statistic for μ_d is:



Go through the same five hypothesis testing steps.



- 9: Inferences Involving One Population
- 9.2 Inference about the Binomial Probability of Success
 - There are three possible hypothesis pairs for the difference in means. Critical Non-Critical $H_0: \mu_d \ge \mu_{d0}$ vs. $H_a: \mu_d < \mu_{d0}$ Region Region Reject H_0 if less than Reject Fail to Reject $t^* = \frac{d - \mu_{d0}}{S_d / \sqrt{n}}$ $-t(df, \alpha)$ data indicates $\mu_d < \mu_{d0}$ because d is "a lot"

 t^{+}

CV

0

smaller than μ_{d0}

Z.

9: Inferences Involving One Population

9.2 Inference about the Binomial Probability of Success

There are three possible hypothesis pairs for the difference in means. **Non-Critical** Critical $H_0: \mu_d \le \mu_{d0}$ vs. $H_a: \mu_d > \mu_{d0}$ Region Region Reject H_0 if greater then Fail to Reject Reject $t^* = \frac{d - \mu_{d0}}{s_d / \sqrt{n}}$ $t(df, \alpha)$ data indicates $\mu_d > \mu_{d0}$ because d is "a lot" smaller than μ_{d0} *t* *

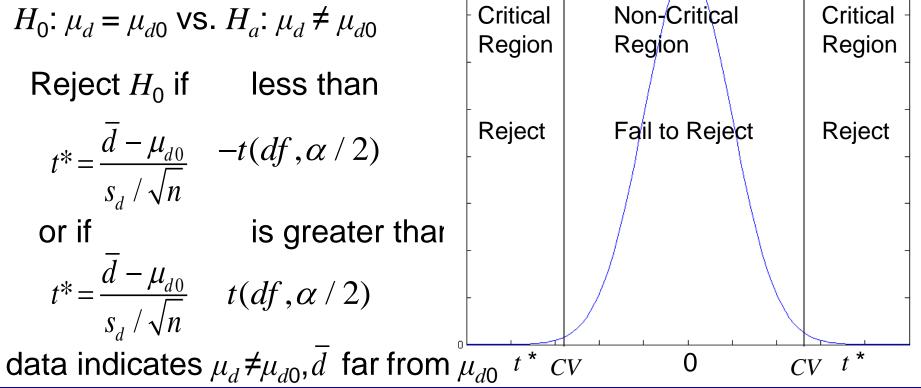
0

CV

9: Inferences Involving One Population

9.2 Inference about the Binomial Probability of Success

There are three possible hypothesis pairs for the difference in means.



10: Inferences Involving Two Populations

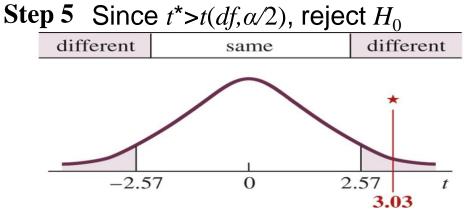
10.2 Inference for Mean Difference Two Dependent Samples

n = 6 8, 1, 9, -1, 12, 9

	Car	1	2	3	4	5	6
Example:	Brand A	125	64	94	38	90	106
	Brand B	133	65	103	37	102	115

Test mean difference of Brand B minus Brand A is zero.

Step 1 $H_0: \mu_d = 0$ vs. $H_a: \mu_d \neq 0$ Step 2 df = 5 $t^* = \frac{\overline{d} - \mu_{d0}}{s_d / \sqrt{n}}$ Step 3 $\overline{d} = 6.3$ $t^* = \frac{6.3 - 0}{5.1 / \sqrt{6}} = 3.03$ Step 4 $t(df, \alpha / 2) = 2.57$



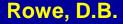
Conclusion: Significant difference in tread wear at .05 level.

Figures from Johnson & Kuby, 2012.

Chapter 10: Inferences Involving Two Populations

Questions?

Homework: Read Chapter 10.1-10.2 WebAssign Chapter 10 #13, 15, 23, 25, 29, 31, 35



Chapter 10: Inference Involving Two Populations

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

Be The Difference.

10: Inferences Involving Two Populations 10.3 Inference for Mean Difference Two Independent Samples

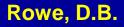
Background We said from SDSM that mean(\overline{x}) = μ and variance(\overline{x}) = $\frac{\sigma^2}{n}$.

We are often interested in comparisons between means $\overline{x}_1 - \overline{x}_2$.

There's a rule that says that if \overline{x}_1 and \overline{x}_2 have means μ_1 and μ_2 ,

and variances
$$\sigma_1^2$$
 and σ_2^2 ,
then mean $(\overline{x}_1 - \overline{x}_2) = \mu_1 - \mu_2$
and variance $(\overline{x}_1 - \overline{x}_2) = \frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2} \longrightarrow \sigma_{\overline{x}_1 - \overline{x}_2} = \sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
if $x_1 \& x_2$ independent

Variances add not standard deviations.



10: Inferences Involving Two Populations 10.3 Inference for Mean Difference Two Independent Samples Means Using Two Independent Samples

If two populations are independent we can construct confidence intervals and test hypotheses for the difference in their means.

If independent samples of sizes n_1 and n_2 are drawn ... with means μ_1 and μ_2 and variances σ_1^2 and σ_2^2 , then the sampling distribution of $\overline{x}_1 - \overline{x}_2$... has

1. mean
$$\mu_{\overline{x}_1-\overline{x}_2} = \mu_1 - \mu_2$$
 and

2. standard error $\sigma_{\overline{x}_1 - \overline{x}_2} = \sqrt{\left(\frac{\sigma_1^2}{n_1}\right) + \left(\frac{\sigma_2^2}{n_2}\right)}$

If both pops, are normal, then $\overline{x}_1 - \overline{x}_2$ is normal.

(10.6)

Rowe, D.B.

Actually the CLT works here for \overline{x} 's.

10: Inferences Involving Two Populations 10.3 Inference for Mean Difference Two Independent Samples

However, the true population variances are never truly known

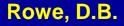
so we estimate σ_1^2 and σ_2^2 by s_1^2 and s_2^2 and the

standard error

by

$$\sigma_{\overline{x}_1 - \overline{x}_2} = \sqrt{\left(\frac{\sigma_1^2}{n_1}\right) + \left(\frac{\sigma_2^2}{n_2}\right)}$$
(10.6)

$$S_{\overline{x}_1 - \overline{x}_2} = \sqrt{\left(\frac{S_1^2}{n_1}\right) + \left(\frac{S_2^2}{n_2}\right)}$$
 (10.7)



MATH 1700

10: Inferences Involving Two Populations 10.3 Inference for Mean Difference Two Independent Samples Confidence Interval Procedure

With σ_1 and σ_2 unknown, a 1- α confidence interval for $\mu_1 - \mu_2$ is: **Confidence Interval for Mean Difference (Independent** Samples) $(\overline{x}_1 - \overline{x}_2) - t(df, \alpha/2) \sqrt{\left(\frac{s_1^2}{n_1}\right) + \left(\frac{s_2^2}{n_2}\right)} \text{ to } (\overline{x}_1 - \overline{x}_2) + t(df, \alpha/2) \sqrt{\left(\frac{s_1^2}{n_1}\right) + \left(\frac{s_2^2}{n_2}\right)}$ where df is either calculated or smaller of df_1 , or df_2 (10.8)Actually, this is for $\sigma_1 \neq \sigma_2$. Next larger number than If using a computer $df = \left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2 \left/ \left(\frac{\left(s_1^2 / n_1\right)^2}{n_1 - 1} + \frac{\left(s_2^2 / n_2\right)^2}{n_2 - 1}\right)^2 \right|$ If not using a computer program. program. Need normal populations to use t critical values.

10: Inferences Involving Two Populations

10.3 Inference Mean Difference Confidence Interval

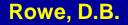
Number	Mean	Standard Deviation
$= 20 \frac{1}{x}$	$f_f = 63.8$	$s_f = 2.18$ $s_m = 1.92$
		$= 20 \overline{x}_{f} = 63.8$

Example:

Interested in difference in mean heights between men and women. The heights of 20 females and 30 males is measured. Construct a 95% confidence interval for $\mu_m - \mu_f$, $\sigma_m \& \sigma_f$ unknown

$$(\overline{x}_m - \overline{x}_f) \pm t(df, \alpha / 2) \sqrt{\left(\frac{s_m^2}{n_m}\right) + \left(\frac{s_f^2}{n_f}\right)} \qquad \qquad \alpha = 0.05$$

$$t(19, .025) =$$



10: Inferences Involving Two Populations

10.3 Inference Mean Difference Confidence Interval

Standard Deviation
$s_f = 2.18$ $s_m = 1.92$

Example:

Interested in difference in mean heights between men and women. The heights of 20 females and 30 males is measured. Construct a 95% confidence interval for $\mu_m - \mu_f$, $\sigma_m \& \sigma_f$ unknown

$$(\overline{x}_{m} - \overline{x}_{f}) \pm t(df, \alpha / 2) \sqrt{\left(\frac{s_{m}^{2}}{n_{m}}\right) + \left(\frac{s_{f}^{2}}{n_{f}}\right)} + (69.8 - 63.8) \pm 2.09 \sqrt{\left(\frac{(1.92)^{2}}{30}\right) + \left(\frac{(2.18)^{2}}{20}\right)}$$

 $\alpha = 0.05$ t(19,.025) = 2.09

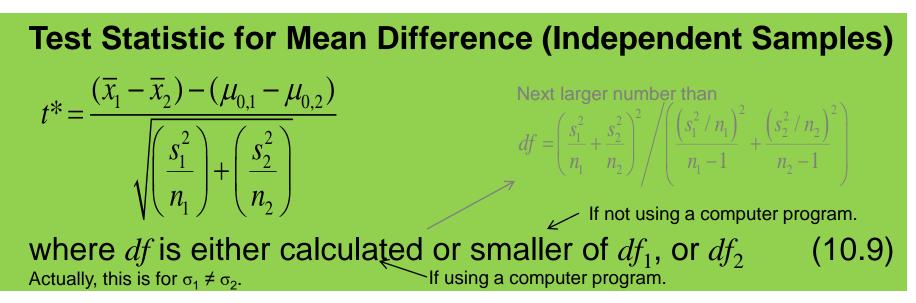
therefore 4.75 to 7.25

Figure from Johnson & Kuby, 2012.

We can test for differences in the population means:

$$\begin{split} H_0: \ \mu_1 \geq \mu_2 \ \text{vs.} \ H_a: \ \mu_1 < \mu_2 & \longrightarrow & H_0: \ \mu_1 - \mu_2 \geq 0 \ \text{vs.} \ H_a: \ \mu_1 - \mu_2 < 0 \\ H_0: \ \mu_1 \leq \mu_2 \ \text{vs.} \ H_a: \ \mu_1 > \mu_2 & \longrightarrow & H_0: \ \mu_1 - \mu_2 \leq 0 \ \text{vs.} \ H_a: \ \mu_1 - \mu_2 > 0 \\ H_0: \ \mu_1 = \mu_2 \ \text{vs.} \ H_a: \ \mu_1 \neq \mu_2 & \longrightarrow & H_0: \ \mu_1 - \mu_2 = 0 \ \text{vs.} \ H_a: \ \mu_1 - \mu_2 \neq 0 \end{split}$$

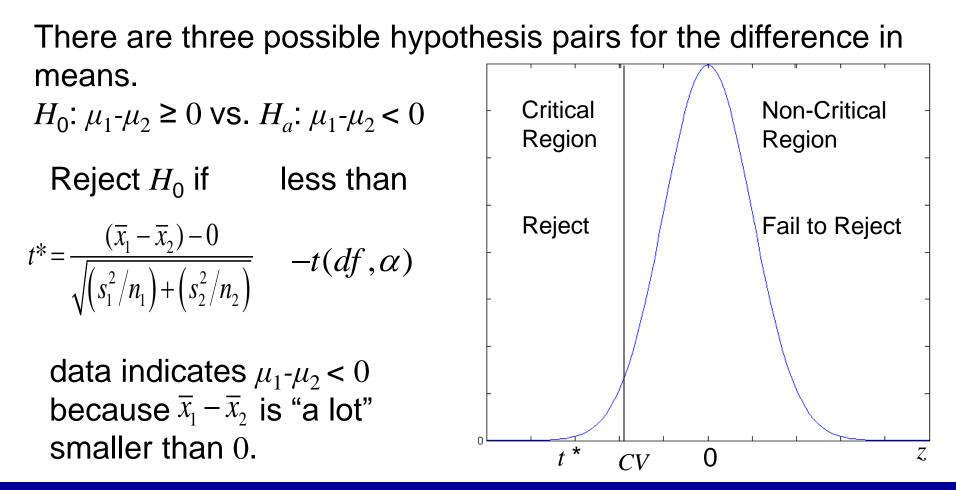
With σ_1 and σ_2 unknown, the test statistic for $\mu_1 - \mu_2$ is:



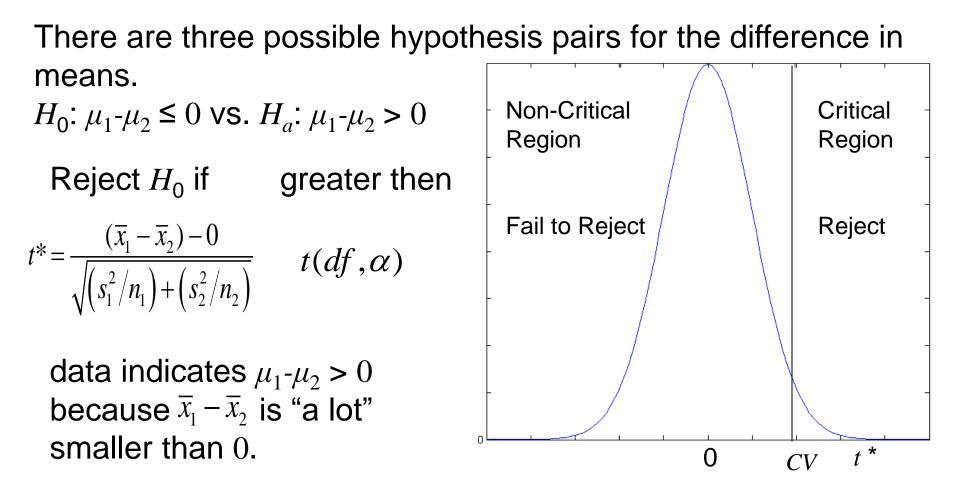
Go through the same five hypothesis testing steps.

Need normal populations to use t critical values.

- 9: Inferences Involving One Population
- 9.2 Inference about the Binomial Probability of Success



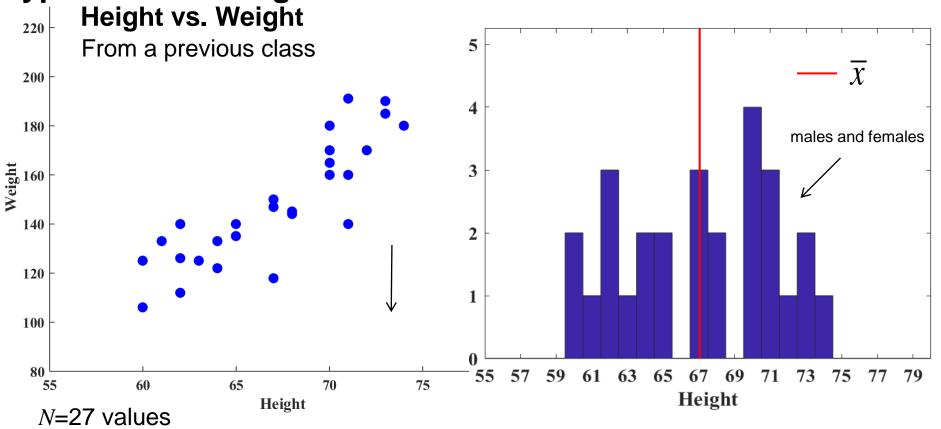
- 9: Inferences Involving One Population
- 9.2 Inference about the Binomial Probability of Success

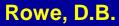


- 9: Inferences Involving One Population
- 9.2 Inference about the Binomial Probability of Success
 - There are three possible hypothesis pairs for the difference in means. Critical Non-Critical Critical $H_0: \mu_1 - \mu_2 = 0$ vs. $H_a: \mu_1 - \mu_2 \neq 0$ Region Region Region Reject H_0 if less than Reject Fail to Reject Reject $t^{*} = \frac{(\overline{x_{1}} - \overline{x_{2}}) - 0}{\sqrt{\left(s_{1}^{2}/n_{1}\right) + \left(s_{2}^{2}/n_{2}\right)}} \quad -t(df, \alpha/2)$ or if $t^{*} = \frac{(\overline{x_{1}} - \overline{x_{2}}) - 0}{\sqrt{\left(s_{1}^{2}/n_{1}\right) + \left(s_{2}^{2}/n_{2}\right)}} \quad \text{is greater that}$ $t(df, \alpha/2)$ is greater than $t^* CV$ data indicates $\mu_1 - \mu_2 \neq 0$, $\overline{x}_1 - \overline{x}_2$ *CV t* * 0 far from 0.

10: Inferences Involving Two Populations

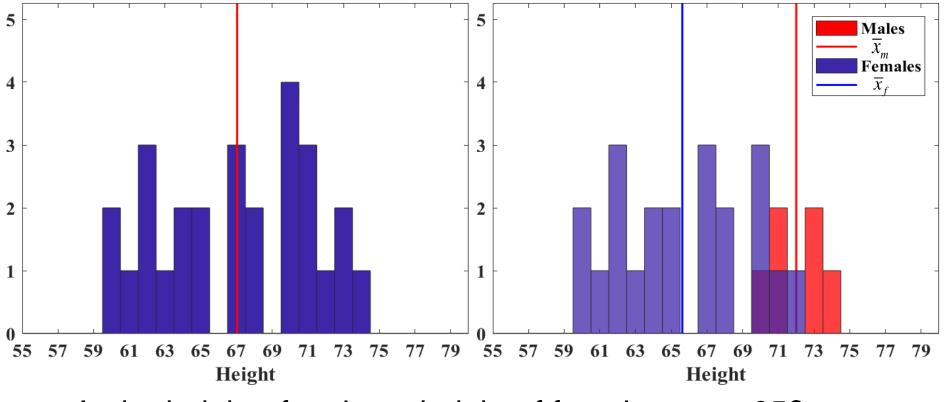
10.3 Inference for Mean Difference Two Independent Samples Hypothesis Testing Procedure 27 values



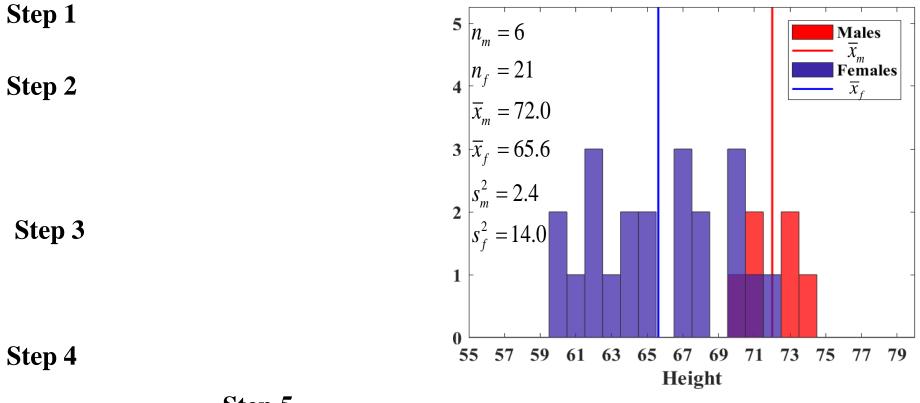


10: Inferences Involving Two Populations

10.3 Inference for Mean Difference Two Independent Samples Hypothesis Testing Procedure 27 values

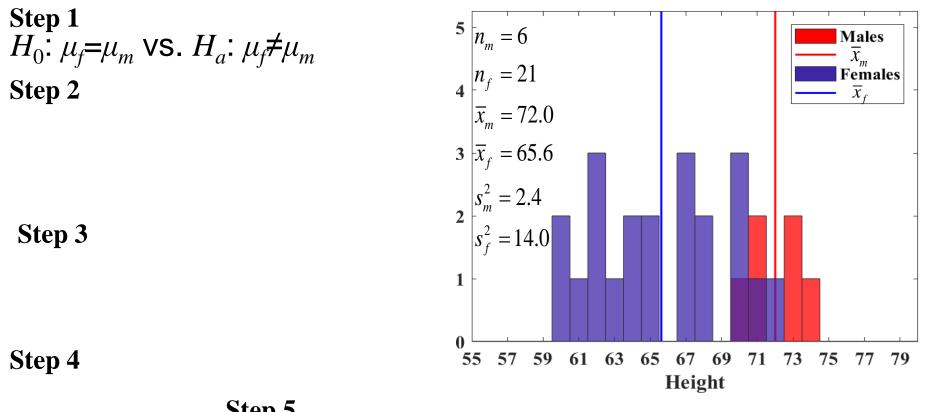


Is the height of males = height of females at α =.05?



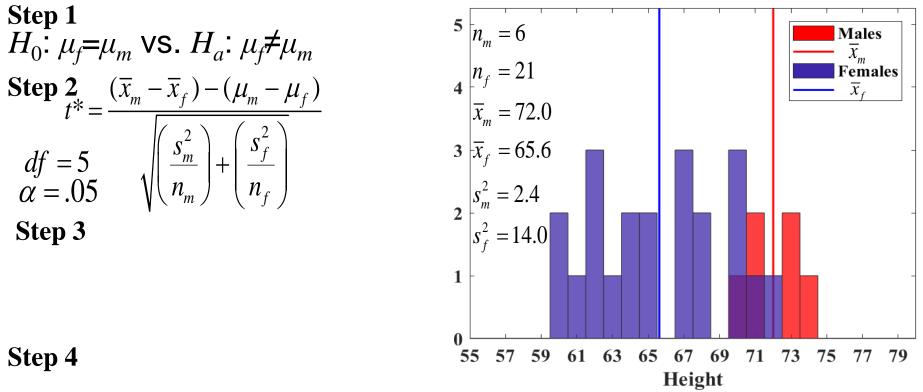
32

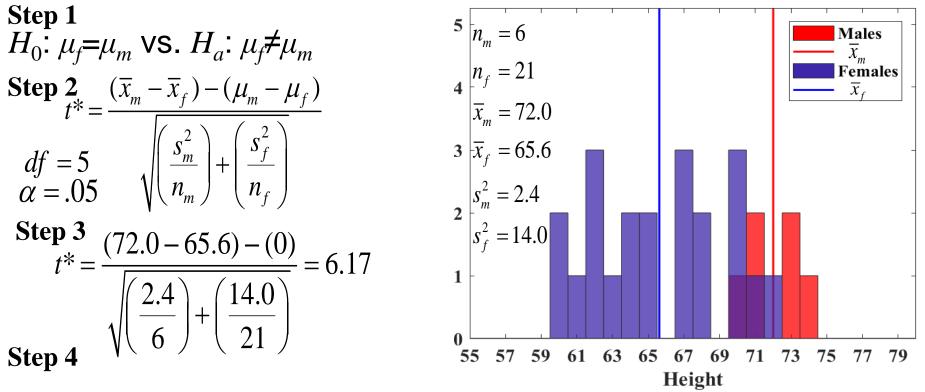
10: Inferences Involving Two Populations 10.3 Inference for Mean Difference Two Independent Samples Hypothesis Testing Procedure 27 values

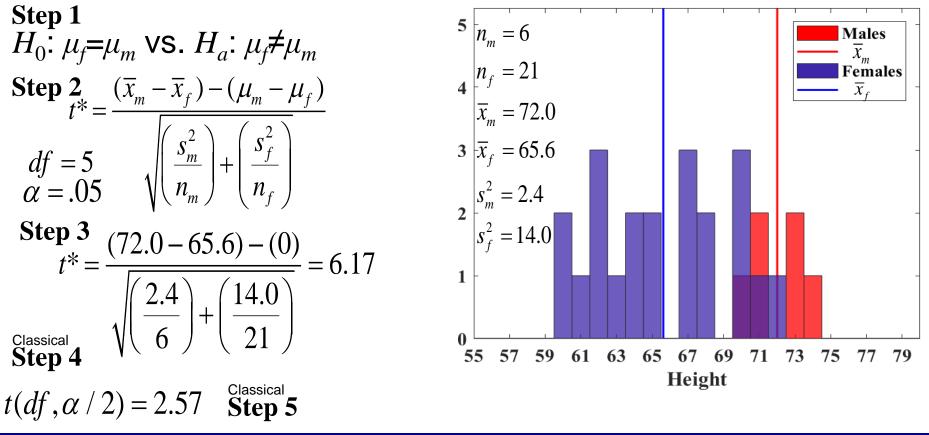


33

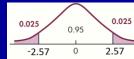
10: Inferences Involving Two Populations10.3 Inference for Mean Difference Two Independent SamplesHypothesis Testing Procedure27 values



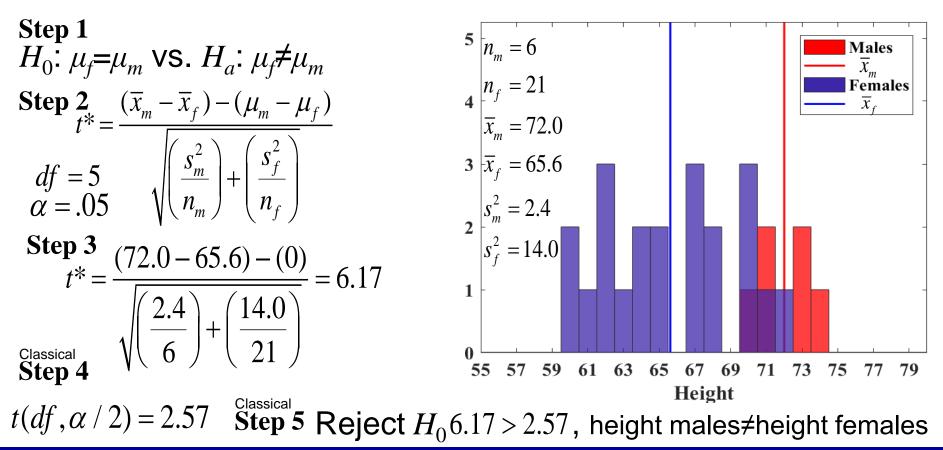




Rowe, D.B.

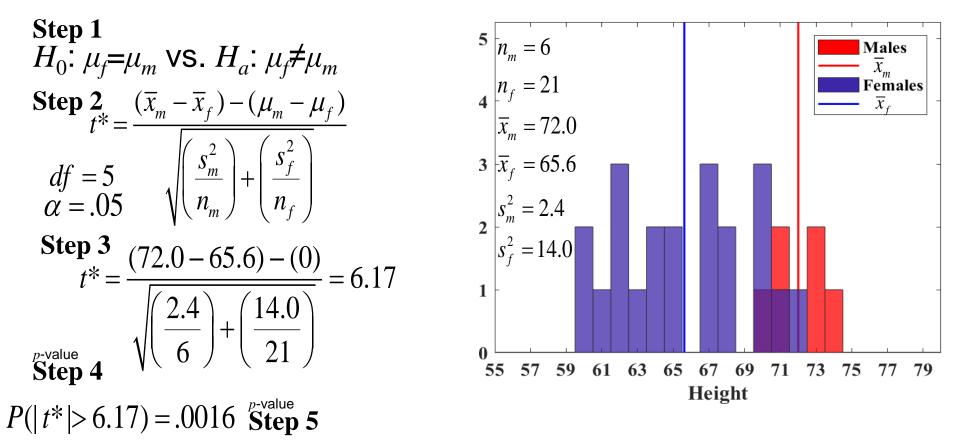


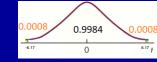
35

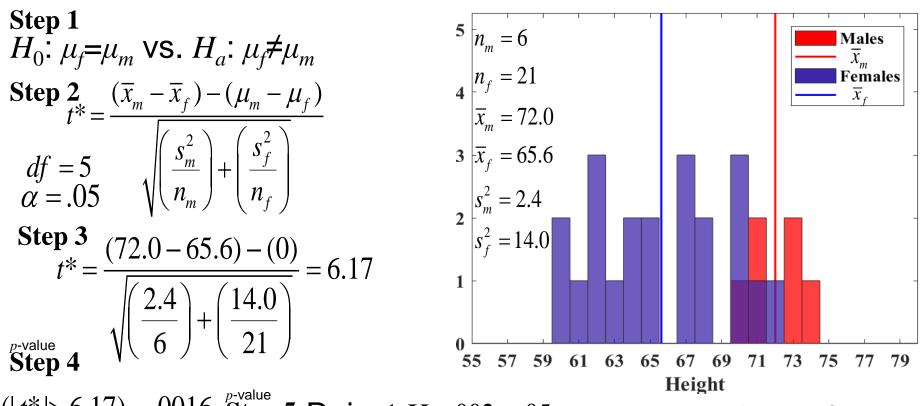


37

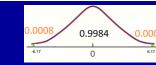
10: Inferences Involving Two Populations10.3 Inference for Mean Difference Two Independent SamplesHypothesis Testing Procedure27 values







 $P(|t^*|>6.17) = .0016$ Step 5 Reject H_0 .002 < .05 , height males≠height females



Chapter 10: Inferences Involving Two Populations

Questions?

Homework: Read Chapter 10.3 WebAssign Chapter 10 # 41, 45, 53, 57, 58, 59, 63

