MATH 1700

Class 20

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

Be The Difference.

Copyright by D.B. Rowe

Final Exam Thursday Dec 12, 8:00am – 10:00 pm Cudahy 001

https://bulletin.marquette.edu/undergrad/academicregulations/#examination s-midtermandfinal

"Final examinations are held in most subjects and must be held on the days/times, as published on the university calendar website. No final exam may be rescheduled for the convenience of the faculty or students."

"Students who miss a final examination risk receiving a failing grade for the course."

Agenda:

Recap Chapter 9.2 and 9.3

Lecture Chapter 10.1-10.2

Recap Chapter 9.2 and 9.3

9: Inferences Involving One Population 9.2 Inference about the Binomial Probability of Success Hypothesis Testing Procedure

We can perform hypothesis tests on the proportion $H_0: p \ge p_0$ vs. $H_a: p < p_0$ $H_0: p \le p_0$ vs. $H_a: p > p_0$ $H_0: p = p_0$ VS. $H_a: p \neq p_0$

Test Statistic for a Proportion *p* $z^* = \frac{p - p_0}{\sqrt{\frac{p_0(1 - p_0)}{1 - p_0}}}$

with
$$p' = \frac{x}{n}$$

(9.9)

Assume n large for CLT and z.

- 9: Inferences Involving One Population
- 9.2 Inference about the Binomial Probability of Success

Step 5: Since 2.34>1.65, Reject H_0 .

Figure from Johnson & Kuby, 2012.

9: Inferences Involving One Population 9.3 Inference about the Variance and Standard Deviation

We can perform hypothesis tests on the variance.

 $H_0: \sigma^2 \ge \sigma_0^2 \text{ VS. } H_a: \sigma^2 < \sigma_0^2$ $H_0: \sigma^2 \le \sigma_0^2 \text{ VS. } H_a: \sigma^2 > \sigma_0^2$ $H_0: \sigma^2 = \sigma_0^2 \text{ VS. } H_a: \sigma^2 \neq \sigma_0^2$

For this hypothesis test, use the χ^2 distribution \longrightarrow

Figure from Johnson & Kuby, 2012.

- 9: Inferences Involving One Population
- 9.3 Inference about the Variance and Standard Deviation

Will also need critical values.

$$P(\chi^2 > \chi^2(df, \alpha)) = \alpha$$

Table 8 Appendix B Page 721

Marquette University

α

 χ^2

 $\chi^2(df, \boldsymbol{\alpha})$

9: Inferences Involving One Pop. Example: Find $\chi^2(20,0.05)$. Table 8, Appendix B, Page 721.

a) Area to the Right

	0.995	0.99	0.975	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.025	0.01	0.005
b) A	rea to the Let	ft (the Cum	ulative Area	a)		٨	Aedian			-			
df	0.005	0.01	0.025	0.05	0.10	0.25	0.50	0.75	0.90	0.95	0.975	0.99	0.995
1	0.0000393	0.000157	0.000982	0.00393	0.0158	0.102	0.455	1.32	2.71	3.84	5.02	6.63	7.88
2	0.0100	0.0201	0.0506	0.103	0.211	0.575	1.39	2.77	4.61	5.99	7.38	9.21	10.6
3	0.0717	0.115	0.216	0.352	0.584	1.21	2.37	4.11	6.25	7.81	9.35	11.3	12.8
4	0.207	0.297	0.484	0.711	1.06	1.92	3.36	5.39	7.78	9.49	11.1	13.3	14.9
5	0.412	0.554	0.831	1.15	1.61	2.67	4.35	6.63	9.24	11.1	12.8	15.1	16.7
6	0.676	0.872	1.24	1.64	2.20	3.45	5.35	7.84	10.6	12.6	14.4	16.8	18.5
7	0.989	1.24	1.69	2.17	2.83	4.25	6.35	9.04	12.0	14.1	16.0	18.5	20.3
8	1.34	1.65	2.18	2.73	3.49	5.07	7.34	10.2	13.4	15.5	17.5	20.1	22.0
9	1.73	2.09	2.70	3.33	4.17	5.90	8.34	11.4	14.7	16.9	19.0	21.7	23.6
10	2.16	2.56	3.25	3.94	4.87	6.74	9.34	12.5	16.0	18.3	20.5	23.2	25.2
11	2.60	3.05	3.82	4.57	5.58	7.58	10.34	13.7	17.3	19.7	21.9	24.7	26.8
12	3.07	3.57	4.40	5.23	6.30	8.44	11.34	14.8	18.5	21.0	23.3	26.2	28.3
13	3.57	4.11	5.01	5.89	7.04	9.30	12.34	16.0	19.8	22.4	24.7	27.7	29.8
14	4.07	4.66	5.63	6.57	7.79	10.2	13.34	17.1	21.1	23.7	26.1	29.1	31.3
15	4.60	5.23	6.26	7.26	8.55	11.0	14.34	18.2	22.3	25.0	27.5	30.6	32.8
16	5.14	5.81	6.91	7.96	9.31	11.9	15.34	19.4	23.5	26.3	28.8	32.0	34.3
17	5.70	6.41	7.56	8.67	10.1	12.8	16.34	20.5	24.8	27.6	30.2	33.4	35.7
18	6.26	7.01	8.23	9.39	10.9	13.7	17.34	21.6	26.0	28.9	31.5	34.8	37.2
19	6.84	7.63	8.91	10.1	11.7	14.6	18.34	22.7	27.2	30.1	32.9	36.2	38.6
20	7.43	8.26	9.59	10.9	12.4	15.5	19.34	23.8	28.4	31.4	34.2	37.6	40.0

Figures from Johnson & Kuby, 2012.

Example:

A soft-drink bottling company wants to control variability by not allowing the variance to exceed 0.0004. A sample is taken, n=28, $s^2=0.0007$ and $\alpha=0.05$.

Chapter 9: Inferences Involving One Population

Questions?

Homework: Read Chapter 9.2-9.3 WebAssign Chapter 9 # 93, 95, 97, 119, 121, 129, 131, 135

MATH 1700

Lecture Chapter 10

Chapter 10: Inference Involving Two Populations

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

Be The Difference.

10: Inferences Involving Two Populations 10.1 Dependent and Independent Samples

In this chapter we will have samples from two populations.

The two populations can either be dependent or independent.

Dependent Samples: If samples have related pairs. Random sample of married couples. Male Height vs. Female Height

Independent Samples: If samples are unrelated. Random sample of males, Random Sample of females. Male Height vs. Female Height not same

When we have dependent samples, there is a commonality between the two items in the pair. Quite often before and after.

Population 1:
$$\mu_1 = \mu_c + \mu_{before}$$

Common or baseline mean
Population 2: $\mu_2 = \mu_c + \mu_{after}$
Common or baseline mean

But we're interested in the difference in means:

$$\mu_1 - \mu_2 = (\mu_c + \mu_{before}) - (\mu_c + \mu_{after})$$

 $= \mu_{before} - \mu_{after}$

common mean subtracts out

Paired Difference

(10.1)

10: Inferences Involving Two Populations 10.2 Inference for Mean Difference Two Dependent Samples

We form a paired difference from the data

This means that we are subtracting the sample value from

 $d = x_1 - x_2$

population 2 from the sample value from population 1.

Imagine that we have paired data $(x_{1,1}, x_{2,1}), ..., (x_{1,n}, x_{2,n})$ $x_{j,i}$, population *j*, observation *i* where *j*=1,2 *i*=1,...,*n*.

We form a paired difference from the data: $d_i = x_{1,i} - x_{2,i}$ $d_1 = x_{1,1} - x_{2,1}, d_2 = x_{1,2} - x_{2,2}, ..., d_n = x_{1,n} - x_{2,n}$

When paired observations are randomly selected from normal populations, the paired difference, $d_i = x_{1,i} - x_{2,i}$ will be approximately normally distributed about a mean μ_d with a standard deviation σ_d .

Is actually exactly normally distributed if the populations are (dependent) normally distributed.

With the d_i 's being sampled from populations

with a mean of μ_d and a standard deviation of σ_d , then

 $\overline{d} = \frac{1}{n} \sum_{i=1}^{n} d_i$ is approximately normally distributed (recall CLT)

with a mean $\mu_{\bar{d}} = \mu_d$, and standard deviation $\sigma_{\bar{d}} = \frac{\sigma_d}{\sqrt{n}}$.

This would allow us to form a z statistic for the mean of

differences \overline{d} , $z = \frac{\overline{d} - \mu_d}{\sigma_d / \sqrt{n}}$ with a standard normal distribution. We can then look up probabilities in the table,

find critical values $z(\alpha/2)$, construct confidence intervals

$$\overline{d} \pm z(\alpha/2) \frac{\sigma_d}{\sqrt{n}}$$

and test hypotheses using
$$z^* = \frac{\overline{d} - \mu_{0d}}{\sigma_d / \sqrt{n}}$$

Figure from Johnson & Kuby, 2012.

- However, as in Inferences for One Population, we never
- know the true value of σ_d . So we estimate it with sample
- standard deviation s_d . This changes $z = \frac{\overline{d} \mu_d}{\sigma_d / \sqrt{n}}$ to $t = \frac{\overline{d} \mu_d}{s_d / \sqrt{n}}$ and the distribution from standard normal

to Student *t* with df = n-1 where $s_d^2 = \frac{1}{n-1} \sum_{i=1}^n (d_i - \overline{d})^2$.

10: Inferences Involving Two Populations 10.2 Inference for Mean Difference Two Dependent Samples Confidence Interval Procedure

With σ_d unknown, a 1- α confidence interval for μ_d is:

Confidence Interval for Mean Difference (Dependent Samples)

$$\overline{d} - t(df, \alpha/2) \frac{s_d}{\sqrt{n}}$$
 to $\overline{d} + t(df, \alpha/2) \frac{s_d}{\sqrt{n}}$ where $df = n-1$ (10.2)

$$\overline{d} = \frac{1}{n} \sum_{i=1}^{n} d_i$$
 (10.3) $S_d^2 = \frac{1}{n-1} \sum_{i=1}^{n} (d_i - \overline{d})^2$ (10.4)

10.2 Inference for Mean Difference Two Dependent Samples

Car	1	2	3	4	5	6
Brand A	125	64	94	38	90	106
Brand B	133	65	103	37	102	115

Example:

 d_i 's: 8, 1, 9, -1, 12, 9

Construct a 95% CI for mean difference in Brand B – A tire wear.

$$n = 6 \qquad df = 5 \qquad t(df, \alpha / 2) = \alpha = 0.05$$

$$s_d = \overline{d} \pm t(df, \alpha/2) \frac{s_d}{\sqrt{n}} \longrightarrow$$

 $\overline{d} = \frac{1}{n} \sum_{i=1}^{n} d_{i}$ $s_{d}^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (d_{i} - \overline{d})^{2}$

Figure from Johnson & Kuby, 2012.

10.2 Inference for Mean Difference Two Dependent Samples

Car	1	2	3	4	5	6
Brand A	125	64	94	38	90	106
Brand B	133	65	103	37	102	115

Example:

 d_i 's: 8, 1, 9, -1, 12, 9

Construct a 95% CI for mean difference in Brand B – A tire wear.

$$n = 6 \qquad df = 5 \qquad t(df, \alpha / 2) = 2.57$$

$$\overline{d} = 6.3 \qquad \alpha = 0.05 \qquad \overline{d} \pm t(df, \alpha / 2) \xrightarrow{s_d} \longrightarrow (0.090, 11.7)$$

$$\overline{d} = \frac{1}{n} \sum_{i=1}^{n} d_i$$

$$s_d^2 = \frac{1}{n-1} \sum_{i=1}^{n} (d_i - \overline{d})^2$$

Figure from Johnson & Kuby, 2012.

10: Inferences Involving Two Populations 10.2 Inference for Mean Difference Two Dependent Samples Hypothesis Testing Procedure

We can test for differences in the population means:

$$\begin{split} H_0: \, \mu_1 \geq & \mu_2 \text{ vs. } H_a: \, \mu_1 < & \mu_2 & \longrightarrow & H_0: \, \mu_1 - \mu_2 \geq 0 \text{ vs. } H_a: \, \mu_1 - \mu_2 < 0 \\ H_0: \, \mu_1 \leq & \mu_2 \text{ vs. } H_a: \, \mu_1 > & \mu_2 & \longrightarrow & H_0: \, \mu_1 - \mu_2 \leq 0 \text{ vs. } H_a: \, \mu_1 - \mu_2 > 0 \\ H_0: \, \mu_1 = & \mu_2 \text{ vs. } H_a: \, \mu_1 \neq & \mu_2 & \longrightarrow & H_0: \, \mu_1 - \mu_2 = 0 \text{ vs. } H_a: \, \mu_1 - \mu_2 \neq 0 \end{split}$$

10: Inferences Involving Two Populations 10.2 Inference for Mean Difference Two Dependent Samples Hypothesis Testing Procedure

We can test for differences in the population means:

$$\begin{split} H_{0}: \mu_{1} \geq \mu_{2} \ \forall \text{S.} \ H_{a}: \mu_{1} < \mu_{2} & \to & H_{0}: \mu_{1} - \mu_{2} \geq 0 \ \forall \text{S.} \ H_{a}: \mu_{1} - \mu_{2} < 0 \\ H_{0}: \mu_{1} \leq \mu_{2} \ \forall \text{S.} \ H_{a}: \mu_{1} > \mu_{2} & \to & H_{0}: \mu_{1} - \mu_{2} \leq 0 \ \forall \text{S.} \ H_{a}: \mu_{1} - \mu_{2} > 0 \\ H_{0}: \mu_{1} = \mu_{2} \ \forall \text{S.} \ H_{a}: \mu_{1} \neq \mu_{2} & \to & H_{0}: \mu_{1} - \mu_{2} = 0 \ \forall \text{S.} \ H_{a}: \mu_{1} - \mu_{2} \neq 0 \\ \mu_{d} = \mu_{1} - \mu_{2} & \to & H_{0}: \mu_{d} \geq 0 \ \forall \text{S.} \ H_{a}: \mu_{d} < 0 \end{split}$$

$$(\mu_d = \mu_{before} - \mu_{after}) \qquad H_0: \mu_d \le 0 \text{ vs. } H_a: \mu_d > 0$$

 $H_0: \mu_d = 0$ vs. $H_a: \mu_d \neq 0$

10: Inferences Involving Two Populations 10.2 Inference for Mean Difference Two Dependent Samples Hypothesis Testing Procedure

With σ_d unknown, the test statistic for μ_d is:

Go through the same five hypothesis testing steps.

9: Inferences Involving One Population 9.2 Inference about the Binomial Probability of Success

There are three possible hypothesis pairs for the proportion.

9: Inferences Involving One Population 9.2 Inference about the Binomial Probability of Success

There are three possible hypothesis pairs for the proportion.

Non-Critical Critical $H_0: \mu_d \le \mu_{d0}$ vs. $H_a: \mu_d > \mu_{d0}$ Region Region Reject H_0 if greater then Fail to Reject Reject $t^* = \frac{\overline{d} - \mu_{d0}}{s_d / \sqrt{n}}$ $t(df, \alpha)$ data indicates $\mu_d > \mu_{d0}$ because d is "a lot" smaller than μ_{d0} *t* * 0 CV

9: Inferences Involving One Population 9.2 Inference about the Binomial Probability of Success

There are three possible hypothesis pairs for the proportion.

10.2 Inference for Mean Difference Two Dependent Samples

n=6 8, 1, 9, -1, 12, 9

	Car	1	2	3	4	5	6
Example:	Brand A Brand B	125 133	64 65	94 103	38 37	90 102	106 115
Test mean	difference	e of Bra	nd B mi	inus Bra	ind A is	zero.	
Step 1			Step	5			

Step 2

Step 3

Step 4

Figures from Johnson & Kuby, 2012.

10.2 Inference for Mean Difference Two Dependent Samples

n = 6 8, 1, 9, -1, 12, 9

	Car	1	2	3	4	5	6
Example:	Brand A	125	64	94	38	90	106
	Brand B	133	65	103	37	102	115

Test mean difference of Brand B minus Brand A is zero.

Step 1 H_0 : $\mu_d = 0$ vs. H_a : $\mu_d \neq 0$ Step 5 Step 2

Step 3

Step 4

Figures from Johnson & Kuby, 2012.

10.2 Inference for Mean Difference Two Dependent Samples

n = 6 8, 1, 9, -1, 12, 9

	Car	1	2	3	4	5	6
Example:	Brand A	125	64	94	38	90	106
	Brand B	133	65	103	37	102	115

Step 5

Test mean difference of Brand B minus Brand A is zero.

Step 1 H_0 : $\mu_d = 0$ vs. H_a : $\mu_d \neq 0$ Step 2 df = 5 $t^* = \frac{\overline{d} - \mu_{d0}}{s_d / \sqrt{n}}$

Step 3

Step 4

Figures from Johnson & Kuby, 2012.

10.2 Inference for Mean Difference Two Dependent Samples

n=6 8, 1, 9, -1, 12, 9

	Car	1	2	3	4	5	6
Example:	Brand A	125	64	94	38	90	106
	Brand B	133	65	103	37	102	115

Test mean difference of Brand B minus Brand A is zero.

Step 1 $H_0: \mu_d = 0$ vs. $H_a: \mu_d \neq 0$ Step 5 Step 2 df = 5 $t^* = \frac{\overline{d} - \mu_{d0}}{s_d / \sqrt{n}}$ Step 3 $\overline{d} = 6.3$ $t^* = \frac{6.3 - 0}{5.1 / \sqrt{6}} = 3.03$

Step 4

Figures from Johnson & Kuby, 2012.

10.2 Inference for Mean Difference Two Dependent Samples

n = 6 8, 1, 9, -1, 12, 9

	Car	1	2	3	4	5	6
Example:	Brand A	125	64	94	38	90	106
	Brand B	133	65	103	37	102	115

Test mean difference of Brand B minus Brand A is zero.

Step 1 $H_0: \mu_d = 0$ vs. $H_a: \mu_d \neq 0$ Step 5 Step 2 df = 5 $t^* = \frac{\overline{d} - \mu_{d0}}{s_d / \sqrt{n}}$ Step 3 $\overline{d} = 6.3$ $t^* = \frac{6.3 - 0}{5.1 / \sqrt{6}} = 3.03$ Step 4 $t(df, \alpha / 2) = 2.57$

Figures from Johnson & Kuby, 2012.

10.2 Inference for Mean Difference Two Dependent Samples

n = 6 8, 1, 9, -1, 12, 9

	Car	1	2	3	4	5	6
Example:	Brand A	125	64	94	38	90	106
	Brand B	133	65	103	37	102	115

Test mean difference of Brand B minus Brand A is zero.

Step 1 $H_0: \mu_d = 0$ vs. $H_a: \mu_d \neq 0$ Step 2 df = 5 $t^* = \frac{\overline{d} - \mu_{d0}}{s_d / \sqrt{n}}$ Step 3 $\overline{d} = 6.3$ $t^* = \frac{6.3 - 0}{5.1 / \sqrt{6}} = 3.03$ Step 4 $t(df, \alpha / 2) = 2.57$

Conclusion: Significant difference in tread wear at .05 level.

Figures from Johnson & Kuby, 2012.

Chapter 10: Inferences Involving Two Populations

Questions?

Homework: Read Chapter 10.1-10.2 WebAssign Chapter 10 #13, 15, 23, 25, 29, 31, 35

