MATH 1700

Class 19

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

Be The Difference.

Copyright by D.B. Rowe

Agenda:

Recap Chapter 9.2

Lecture 9.2-9.3

Recap Chapter 9.1-9.2

We talked about a Binomial experiment with two outcomes. Each performance of the experiment is called a trial. Each trial is independent.

$$P(x) = \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x} \qquad \begin{array}{l} n = 1, 2, 3, \dots \\ 0 \le p \le 1 \\ x = 0, 1, \dots, n \end{array}$$

n = number of trials or times we repeat the experiment. x = the number of successes out of n trials. p = the probability of success on an individual trial.

When we perform a binomial experiment we can estimate the probability of heads as

This is a point estimate. Recall the rule for a CI is

point estimate ± some amount

- **9: Inferences Involving One Population**
- 9.2 Inference about the Binomial Probability of Success

Background

In Statistics, mean(cx) = $c\mu$ and variance(cx) = $c^2\sigma^2$.

With
$$p' = \frac{x}{n}$$
, the constant is $c = \frac{1}{n}$, and
 $mean\left(\frac{x}{n}\right) = \left(\frac{1}{n}\right)mean(x) = \left(\frac{1}{n}\right)np = p = \mu_{p'}$

and the variance of
$$p' = \frac{x}{n}$$
 is variance $\left(\frac{x}{n}\right) = \frac{\sigma^2}{n^2} = \frac{p(1-p)}{n}$
standard error of $p' = \frac{x}{n}$ is $\sigma_{p'} = \sqrt{\frac{\sigma^2}{n^2}} = \sqrt{\frac{p(1-p)}{n}}$.

That is where 1. and 2. in the green box below come from

If a random sample of size *n* is selected from a large population with p = P(success), then the sampling distribution of *p*' has:

1. A mean $\mu_{p'}$ equal to p

2. A standard error $\sigma_{p'}$ equal to

$$\frac{p(1-p)}{n}$$

3. An approximately normal distribution if *n* is sufficiently "large."

- 9: Inferences Involving One Population
- 9.2 Inference about the Binomial Probability of Success

For a confidence interval, we would use

Confidence Interval for a Proportion

$$p' - z(\alpha/2)\sqrt{\frac{p'q'}{n}}$$
 to $p' + z(\alpha/2)\sqrt{\frac{p'q'}{n}}$
where $p' = \frac{x}{n}$ and $q' = (1-p')$.

Since we didn't know the true value for p, we estimate it by p'.

This is of the form point estimate \pm some amount .

(9.6)

- 9: Inferences Involving One Population
- 9.2 Inference about the Binomial Probability of Success

Example:

Dana randomly selected n=200 cars and found x=17 convertibles. Find the 90% CI for the proportion of cars that are convertibles.

$$p' = \frac{x}{n} = \frac{17}{200} \qquad p' \pm z(\alpha/2)\sqrt{\frac{p'q'}{n}} \\ \alpha = 0.1 \qquad \longrightarrow \qquad \frac{17}{200} \pm 1.65\sqrt{\frac{(17/200)(1-17/200)}{200}} \\ z(\alpha/2) = z(0.1/2) = 1.65 \qquad 0.052 \text{ to } 0.118$$

9: Inferences Involving One Population 9.2 Inference about the Binomial Probability of Success Determining the Sample Size

Using the error part of the CI, we determine the sample size n.

Maximum Error of Estimate for a Proportion

$$E = z(\alpha / 2) \sqrt{\frac{p'(1-p')}{n}}$$
(9.7)

Sample Size for 1-
$$\alpha$$
 Confidence Interval of p
 $n = \frac{[z(\alpha/2)]^2 p^* (1-p^*)}{E^2}$
From prior data, experience,
gut feelings, séance. Or use 1/2. (9.8)
where p^* and q^* are provisional values used for planning.

9: Inferences Involving One Population 9.2 Inference about the Binomial Probability of Success Determining the Sample Size

9: Inferences Involving One Population 9.2 Inference about the Binomial Probability of Success Determining the Sample Size

Example:

A supplier claims bolts are approx. 5% defective. Determine the sample size n if we want our estimate within ±0.02 with 90% confidence.

$$n = \frac{[z(\alpha/2)]^2 p^* (1-p^*)}{E^2} \qquad \begin{array}{c} 1-\alpha = 0.90 \\ z(0.1/2) = 1.65 \end{array} \qquad \begin{array}{c} E = 0.02 \\ p^* = 0.05 \end{array}$$

$$n = \frac{[1.65]^2 (0.05)(1 - 0.05)}{(0.02)^2} = \frac{0.12931875}{0.0004} = 323.4 \quad \rightarrow \quad n = 324$$

Chapter 9: Inferences Involving One Population

Questions?

Homework: Read Chapter 9.2 WebAssign Homework Chapter 9 # 75, 93, 95, 97

Chapter 9: Inferences Involving One population (continued)

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical

Be The Difference.

9: Inferences Involving One Population 9.2 Inference about the Binomial Probability of Success Hypothesis Testing Procedure

We can perform hypothesis tests on the proportion H_0 : $p \ge p_0$ vs. H_a : $p < p_0$ $H_0: p \le p_0$ vs. $H_a: p > p_0$ H_0 : $p = p_0$ VS. H_a : $p \neq p_0$

Test Statistic for a Proportion *p* $z^* = \frac{p - p_0}{\sqrt{\frac{p_0(1 - p_0)}{1 - p_0}}}$

with
$$p' = \frac{x}{n}$$

(9.9)

Assume n large for CLT and z.

There are three possible hypothesis pairs for the proportion.

Z

There are three possible hypothesis pairs for the proportion.

 $H_{0}: p \leq p_{0} \text{ vs. } H_{a}: p > p_{0}$ Reject H_{0} if greater then $z^{*} = \frac{p' - p_{0}}{\sqrt{\frac{p_{0}(1 - p_{0})}{n}}} \qquad z(\alpha)$

data indicates $p > p_0$ because p' is "a lot" smaller than p_0

There are three possible hypothesis pairs for the proportion.

- 9: Inferences Involving One Population
- 9.2 Inference about the Binomial Probability of Success

Example:

It is reported that 61% get more than 7 hrs of sleep per night on the weekend.

A sample n=350 found that x=235 had more than 7 hours sleep.

With α =.05, does the evidence show that more than 61% sleep More than 7 hrs on the weekend?

 $p_0 = .61$

Fill in the steps.

Step 1:

Step 2:

Step 3:

Step 4:

Step 5:

9.2 Inference about the Binomial Probability of Success

Step 1: H_0 : $p = .61 (\le)$ vs. H_a : p > .61

Step 2:

Step 3:

Step 4:

Step 5:

- 9: Inferences Involving One Population
- 9.2 Inference about the Binomial Probability of Success

Step 1:
$$H_0: p = .61 (\le)$$
 vs. $H_a: p > .61$
Step 2: $z^* = \frac{p' - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \qquad p' = \frac{x}{n}$

Step 3:

Step 4:

Step 5:

Rowe, D.B.

- 9: Inferences Involving One Population
- 9.2 Inference about the Binomial Probability of Success

Step 1:
$$H_0: p = .61 (\le)$$
 vs. $H_a: p > .61$
Step 2: $z^* = \frac{p' - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \qquad p' = \frac{x}{n}$
Step 3: $z^* = \frac{0.671 - 0.61}{\sqrt{\frac{0.61(1 - 0.61)}{350}}} = 2.34$

Step 4:

Step 5:

Rowe, D.B.

- 9: Inferences Involving One Population
- 9.2 Inference about the Binomial Probability of Success

Step 1:
$$H_0: p = .61 (\le)$$
 vs. $H_a: p > .61$
Step 2: $z^* = \frac{p' - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \qquad p' = \frac{x}{n}$
Step 3: $z^* = \frac{0.671 - 0.61}{\sqrt{\frac{0.61(1 - 0.61)}{350}}} = 2.34$
Step 4: $z(0.05) = 1.65$

Step 5:

Rowe, D.B.

9.2 Inference about the Binomial Probability of Success

Step 1:
$$H_0: p = .61 (\le)$$
 vs. $H_a: p > .61$
Step 2: $z^* = \frac{p' - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \qquad p' = \frac{x}{n}$
Step 3: $z^* = \frac{0.671 - 0.61}{\sqrt{\frac{0.61(1 - 0.61)}{350}}} = 2.34$
Step 4: $z(0.05) = 1.65$

Step 5: Since 2.34>1.65, Reject H_0 .

Figure from Johnson & Kuby, 2012.

Rowe, D.B.

MATH 1700

9: Inferences Involving One Population 9.3 Inference about the Variance and Standard Deviation

We can perform hypothesis tests on the variance.

 $H_0: \sigma^2 \ge \sigma_0^2 \text{ vs. } H_a: \sigma^2 < \sigma_0^2$ $H_0: \sigma^2 \le \sigma_0^2 \text{ vs. } H_a: \sigma^2 > \sigma_0^2$ $H_0: \sigma^2 = \sigma_0^2 \text{ vs. } H_a: \sigma^2 \neq \sigma_0^2$

The assumptions for inferences about the variance σ^2 or standard deviation σ : The sampled population is normally distributed.

Marquette University Recall

9: Inferences Involving One Population 9.1 Inference about the Mean μ (σ Unknown)

What is the Student *t*-distribution and how do we get it? Background Information

If the data comes from normally distributed population, then

9: Inferences Involving One Population 9.1 Inference about the Mean μ (σ Unknown)

It turns out that with the variance σ^2 known, the distribution of 14 ~ 10 sample variance $\frac{(n-1)s^2}{\sigma^2}$ *n*=5 has a chi-square 1×10^{6} 12 population variance 10 8 distribution with *n*-1 degrees 6 of freedom. sample variances from each 5 2 $(\chi^2$ distribution on Pages 453-454) 0

5

10

15

20

25

(n –

 $\mu = 100$ $\sigma = 57.7$ n = 5

Marquette University Recall

Rowe, D.B.

MATH 1700

- **9: Inferences Involving One Population**
- 9.3 Inference about the Variance and Standard Deviation

- 9: Inferences Involving One Population
- 9.3 Inference about the Variance and Standard Deviation

Will also need critical values.

$$P(\chi^2 > \chi^2(df, \alpha)) = \alpha$$

Table 8 Appendix B Page 721

Marquette University

α

 χ^2

 $\chi^2(\mathrm{df},\pmb{\alpha})$

9: Inferences Involving One Pop. Example: Find $\chi^2(20,0.05)$. Table 8, Appendix B, Page 721.

a) Area to the Right

	0.995	0.99	0.975	0.95	0.90	0.75	0.50	0.25	0.10	0.05	0.025	0.01	0.005
b) Area to the Left (the Cumulative Area) Median													
df	0.005	0.01	0.025	0.05	0.10	0.25	0.50	0.75	0.90	0.95	0.975	0.99	0.995
1	0.0000393	0.000157	0.000982	0.00393	0.0158	0.102	0.455	1.32	2.71	3.84	5.02	6.63	7.88
2	0.0100	0.0201	0.0506	0.103	0.211	0.575	1.39	2.77	4.61	5.99	7.38	9.21	10.6
3	0.0717	0.115	0.216	0.352	0.584	1.21	2.37	4.11	6.25	7.81	9.35	11.3	12.8
4	0.207	0.297	0.484	0.711	1.06	1.92	3.36	5.39	7.78	9.49	11.1	13.3	14.9
5	0.412	0.554	0.831	1.15	1.61	2.67	4.35	6.63	9.24	11.1	12.8	15.1	16.7
6	0.676	0.872	1.24	1.64	2.20	3.45	5.35	7.84	10.6	12.6	14.4	16.8	18.5
7	0.989	1.24	1.69	2.17	2.83	4.25	6.35	9.04	12.0	14.1	16.0	18.5	20.3
8	1.34	1.65	2.18	2.73	3.49	5.07	7.34	10.2	13.4	15.5	17.5	20.1	22.0
9	1.73	2.09	2.70	3.33	4.17	5.90	8.34	11.4	14.7	16.9	19.0	21.7	23.6
10	2.16	2.56	3.25	3.94	4.87	6.74	9.34	12.5	16.0	18.3	20.5	23.2	25.2
11	2.60	3.05	3.82	4.57	5.58	7.58	10.34	13.7	17.3	19.7	21.9	24.7	26.8
12	3.07	3.57	4.40	5.23	6.30	8.44	11.34	14.8	18.5	21.0	23.3	26.2	28.3
13	3.57	4.11	5.01	5.89	7.04	9.30	12.34	16.0	19.8	22.4	24.7	27.7	29.8
14	4.07	4.66	5.63	6.57	7.79	10.2	13.34	17.1	21.1	23.7	26.1	29.1	31.3
15	4.60	5.23	6.26	7.26	8.55	11.0	14.34	18.2	22.3	25.0	27.5	30.6	32.8
16	5.14	5.81	6.91	7.96	9.31	11.9	15.34	19.4	23.5	26.3	28.8	32.0	34.3
17	5.70	6.41	7.56	8.67	10.1	12.8	16.34	20.5	24.8	27.6	30.2	33.4	35.7
18	6.26	7.01	8.23	9.39	10.9	13.7	17.34	21.6	26.0	28.9	31.5	34.8	37.2
19	6.84	7.63	8.91	10.1	11.7	14.6	18.34	22.7	27.2	30.1	32.9	36.2	38.6
20	7.43	8.26	9.59	10.9	12.4	15.5	19.34	23.8	28.4	31.4	34.2	37.6	40.0

0

Figures from Johnson & Kuby, 2012.

Example:

A soft-drink bottling company wants to control variability by not allowing the variance to exceed 0.0004. A sample is taken, n=28, $s^2=0.0007$ and $\alpha=0.05$.

Step 1

Step 2Step 3

Step 4

Step 5

Example:

A soft-drink bottling company wants to control variability by not allowing the variance to exceed 0.0004. A sample is taken, n=28, $s^2=0.0007$ and $\alpha=0.05$.

 Step 1
 H_0 : $\sigma^2 \le 0.0004$ vs. H_a : $\sigma^2 > 0.0004$

 Step 2
 Step 3

Step 4

Step 5

Example:

A soft-drink bottling company wants to control variability by not allowing the variance to exceed 0.0004. A sample is taken, n=28, $s^2=0.0007$ and $\alpha=0.05$.

Step 1 $H_0: \sigma^2 \le 0.0004 \text{ vs. } H_a: \sigma^2 > 0.0004$ Step 2 $\chi^{2*} = \frac{(n-1)s^2}{\sigma_0^2}$ Step 4

Step 5

Example:

A soft-drink bottling company wants to control variability by not allowing the variance to exceed 0.0004. A sample is taken, n=28, $s^2=0.0007$ and $\alpha=0.05$.

Step 1 $H_0: \sigma^2 \le 0.0004 \text{ vs.} H_a: \sigma^2 > 0.0004 \qquad \sigma_0^2 = 0.0004$ Step 2 $\chi^{2*} = \frac{(n-1)s^2}{\sigma_0^2} \longrightarrow \qquad \chi^{2*} = \frac{(28-1)(0.0007)}{0.0004} = 47.25$ Step 4

Step 5

Example:

A soft-drink bottling company wants to control variability by not allowing the variance to exceed 0.0004. A sample is taken, n=28, $s^2=0.0007$ and $\alpha=0.05$.

Example:

A soft-drink bottling company wants to control variability by not allowing the variance to exceed 0.0004. A sample is taken, n=28, $s^2=0.0007$ and $\alpha=0.05$.

Chapter 9: Inferences Involving One Population

Questions?

Homework: Read Chapter 9.2-9.3 WebAssign Chapter 9 # 93, 95, 97, 119, 121, 129, 131, 135