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Recap Chapter 9.1
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9: Inferences Involving One Population
9.1 Inference about the Mean μ (σ Unknown)

In Chapter 8, we performed hypothesis tests on the mean by 

1) assuming that      was normally distributed (n “large”),

2) assuming the hypothesized mean μ0 were true,

3) assuming that σ was known, so that we could form 

      which with 1) ‒ 3) has standard normal dist.
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9: Inferences Involving One Population
9.1 Inference about the Mean μ (σ Unknown)

However, in real life, we never know σ for 

so we would like to estimate σ by s, then use

                     .

But t* does not have a standard normal distribution.

It has what is called a Student t-distribution.
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9: Inferences Involving One Population
9.1 Inference about the Mean μ (σ Unknown)

Using the t-Distribution Table

Finding critical value from a Student t-distribution, df=n-1
 

t(df,α),  t value with α area larger than it 

with df degrees 

of freedom

Table 6

Appendix B 

Page 719.
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Figure from Johnson & Kuby, 2012.
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9: Inferences Involving One Population

Example: Find the value of t(10,0.05),

7
Rowe, D.B.

9.1 Inference about the Mean μ (σ Unknown)

⁞

df=10, α=0.05.

Table 6

Appendix B 

Page 719.

Go to 0.05 

One Tail 

column and

down to 10 

df row.

Figures from 

Johnson & Kuby, 2012.
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9: Inferences Involving One Population
9.1 Inference about the Mean μ (σ Unknown)

Confidence Interval Procedure

Discussed a confidence interval for the μ when σ was known,

 

now, with sigma unknown, the CI for the mean is
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Confidence Interval for Mean: 

                                        to                                                     (8.1)
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9: Inferences Involving One Population
9.1 Inference about the Mean μ (σ Unknown)

Recap 9.1:

Essentially have new critical value, t(df,α) to look up 

in a table when σ is unknown. Used same way as before.
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Lecture Chapter 9.2
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9: Inferences Involving One Population
9.2 Inference about the Binomial Probability of Success

We talked about a Binomial experiment with two outcomes. 

Each performance of the experiment is called a trial. 

Each trial is independent.

n = number of trials or times we repeat the experiment.

x = the number of successes out of n trials.

p = the probability of success on an individual trial.
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9: Inferences Involving One Population
9.2 Inference about the Binomial Probability of Success

When we perform a binomial experiment we can estimate the 

probability of heads as

          . 

 

This is a point estimate. Recall the rule for a CI is 

 

Sample Binomial Probability

                                                                                          (9.3)

where x is the number of successes in n trials. 
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9: Inferences Involving One Population
9.2 Inference about the Binomial Probability of Success

In Statistics, if we have a random variable x with 

                          and

then the mean and variance of cx where c is a constant is

                            and                                 .     

If x has a binomial distribution then

 and                                           .
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This is a rule.

2( ) (1 )cx c np p= −variance( )cx cnp=mean

Background
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9: Inferences Involving One Population
9.2 Inference about the Binomial Probability of Success

With            , the constant is            , and

so the variance of             is 

standard error of              is                                                      .
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9: Inferences Involving One Population
9.2 Inference about the Binomial Probability of Success

That is where 1. and 2. in the green box below come from
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If a random sample of size n is selected from a large 

population with p= P(success), then the sampling distribution 

of p' has:

1. A mean       equal to p

2. A standard error       equal to 

3. An approximately normal distribution if n is sufficiently     

    “large.”                                                                                       
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6: Normal Probability Distributions
6.5 Normal Approximation of the Binomial Distribution

If we flip the coin a large number of times

It gets tedious to find the 

n=14 probabilities! 

Rowe, D.B.
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Figure from Johnson & Kuby, 2012.
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6: Normal Probability Distributions
6.5 Normal Approximation of the Binomial Distribution

It gets tedious to find the n=14 probabilities! 

So what we can do is use a histogram representation,

17
Rowe, D.B.

n=14

p=1/2

Figures from Johnson & Kuby, 2012.
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6: Normal Probability Distributions
6.5 Normal Approximation of the Binomial Distribution

So what we can do is use a histogram representation,

Then approximate binomial probabilities with normal areas.
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n=14

p=1/2

Figures from Johnson & Kuby, 2012.
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6: Normal Probability Distributions
6.5 Normal Approximation of the Binomial Distribution

Approximate binomial probabilities with normal areas.

Use a normal with 
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6: Normal Probability Distributions
6.5 Normal Approximation of the Binomial Distribution

We then approximate binomial probabilities with normal areas.
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from the binomial formula

is approximately 

from the normal with
27, 3.5 = =

( 4)P x =

(3.5 4.5)P x 

n=14, p=1/2

Figures from Johnson & Kuby, 2012.

the ±.5 is called a 

“continuity correction”
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9: Inferences Involving One Population
9.2 Inference about the Binomial Probability of Success

In practice, using these guidelines will ensure normality of x:

1. The sample size n is greater than 20.

2. The product np and n(1-p) are both greater than 5.

3. The sample consists of less than 10% of the population.

 1.            ,   2.             and                    ,    3.                .
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9: Inferences Involving One Population
9.2 Inference about the Binomial Probability of Success

But we’re not using x, we’re scaling it and using            . 

It turns out that             also has an approx. normal distribution. 
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9: Inferences Involving One Population
9.2 Inference about the Binomial Probability of Success

Now we can determine probabilities with normal areas.

Need to convert to z’s.
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9: Inferences Involving One Population
9.2 Inference about the Binomial Probability of Success

Now we can determine probabilities with normal areas.

For x                                         For p'

Now we can look up areas.
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9: Inferences Involving One Population
9.2 Inference about the Binomial Probability of Success

For a confidence interval, we would use

Since we didn’t know the true value for p, we estimate it by p'. 

This is of the form                                                      .
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Confidence Interval for a Proportion
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9: Inferences Involving One Population
9.2 Inference about the Binomial Probability of Success

Example: 

Dana randomly selected n=200 cars and found x=17 

convertibles. Find the 90% CI for the proportion of cars 

that are convertibles.

26
Rowe, D.B.

2
p q

p' z
n


' '

( / )
17

'
200

x
p

n
= =

17 (17 200) (1-17 200)
1.65

200 200


2 0.1 / 2 1.65z z( / )= ( )=

0.052 0.118to

= 0.1

Marquette University                                      MATH 1700



9: Inferences Involving One Population
9.2 Inference about the Binomial Probability of Success

Determining the Sample Size

Using the error part of the CI, we determine the sample size n. 

Maximum Error of Estimate for a Proportion

                                                                                              (9.7)
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9: Inferences Involving One Population
9.2 Inference about the Binomial Probability of Success

Determining the Sample Size

Why use p*=1/2? 

It makes p*(1-p*) largest and 

hence makes 

the largest.
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9: Inferences Involving One Population
9.2 Inference about the Binomial Probability of Success

Determining the Sample Size

Example:

A supplier claims bolts are approx. 5% defective. Determine the 

sample size n if we want our estimate within ±0.02 with 90% 

confidence.
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Chapter 9: Inferences Involving One Population

Questions?

Homework: Read Chapter 9.2

 WebAssign Homework

 Chapter 9 # 75, 89

    

Rowe, D.B.
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