MATH 1700

Class 18

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

Be The Difference.

Copyright by D.B. Rowe

Agenda:

Recap Chapter 9.1

Lecture Chapter 9.2

Recap Chapter 9.1

9: Inferences Involving One Population 9.1 Inference about the Mean μ (σ Unknown)

In Chapter 8, we performed hypothesis tests on the mean by

1) assuming that \overline{x} was normally distributed (*n* "large"),

2) assuming the hypothesized mean μ_0 were true,

3) assuming that σ was known, so that we could form

$$z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$
 which with 1) – 3) has standard normal dist.

9: Inferences Involving One Population 9.1 Inference about the Mean μ (σ Unknown)

However, in real life, we never know $\boldsymbol{\sigma}$ for

$$z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$

so we would like to estimate σ by *s*, then use

$$t^* = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$$

MATH 1700

But t^* does not have a standard normal distribution.

It has what is called a Student *t*-distribution.

_ Gosset Guinness Brewery

9: Inferences Involving One Population 9.1 Inference about the Mean μ (σ Unknown) Using the *t*-Distribution Table

Finding critical value from a Student *t*-distribution, *df*=*n*-1

 $t(df,\alpha)$, t value with α area larger than it

with *df* degrees of freedom

Table 6 Appendix B Page 719.

 α

Marquette University

MATH 1700

 $t(df, \alpha)$

0

α

9.1 Inference about the Mean μ (σ Unknown)

Example: Find the value of t(10,0.05), df=10, $\alpha=0.05$.

Area in One Tail

	0.25	0.10	0.05	0.025	0.01	0.005	Table 6
Area in df	1wo lails 0.50	0.20	0.10	0.05	0.02	0.01	Appendix B
3 4 5	0.765 0.741 0.727	1.64 1.53 1.48	2.35 2.13 2.02	3.18 2.78 2.57	4.54 3.75 3.36	5.84 4.60 4.03	Page 719.
6 7 8 9 10	0.718 0.711 0.706 0.703 0.700	1.44 1.41 1.40 <u>1.38</u> 1.37	1.94 1.89 1.86 1.83 (1.81)←	2.45 2.36 2.31 2.26 2.23	3.14 3.00 2.90 2.82 2.76	3.71 3.50 3.36 3.25 3.17	Go to 0.05 One Tail column and
		1				Sequences y	down to 10
35 40 50 70 100	0.682 0.681 0.679 0.678 0.677	1.31 1.30 1.30 1.29 1.29	1.69 1.68 1.68 1.67 1.66	2.03 2.02 2.01 1.99 1.98	2.44 2.42 2.40 2.38 2.36	2.72 2.70 2.68 2.65 2.63	<i>df</i> row. Figures from
df > 100	0.675	1.28	1.65	1.96	2.33	2.58	Johnson & Kuby, 2012.

9: Inferences Involving One Population 9.1 Inference about the Mean μ (σ Unknown) Confidence Interval Procedure

Discussed a confidence interval for the μ when σ was known,

 $\overline{x} - z(\alpha/2) \frac{\sigma}{\sqrt{n}}$ to $\overline{x} + z(\alpha/2) \frac{\sigma}{\sqrt{n}}$

now, with sigma unknown, the CI for the mean is

Confidence Interval for Mean:

Confidence Interval for Mean:

$$\overline{x} - t(df, \alpha/2) \frac{s}{\sqrt{n}}$$
 to $\overline{x} + t(df, \alpha/2) \frac{s}{\sqrt{n}}$ (9.1)

(8.1)

9: Inferences Involving One Population 9.1 Inference about the Mean μ (σ Unknown)

Recap 9.1:

Essentially have new critical value, $t(df, \alpha)$ to look up

in a table when σ is unknown. Used same way as before.

<u>σ assumed known</u>

<u>σ assumed unknown</u>

Lecture Chapter 9.2

We talked about a Binomial experiment with two outcomes. Each performance of the experiment is called a trial. Each trial is independent.

$$P(x) = \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x} \qquad \begin{array}{l} n = 1, 2, 3, \dots \\ 0 \le p \le 1 \\ x = 0, 1, \dots, n \end{array}$$

n = number of trials or times we repeat the experiment. x = the number of successes out of n trials. p = the probability of success on an individual trial.

When we perform a binomial experiment we can estimate the probability of heads as

This is a point estimate. Recall the rule for a CI is

point estimate ± some amount

9: Inferences Involving One Population

9.2 Inference about the Binomial Probability of Success

Background

In Statistics, if we have a random variable *x* with

 $mean(x) = \mu$ and $variance(x) = \sigma^2$

then the mean and variance of cx where c is a constant is

mean(
$$cx$$
) = $c\mu$ and variance(cx) = $c^2\sigma^2$.
This is a rule.

If *x* has a binomial distribution then

$$mean(cx) = cnp$$
 and $variance(cx) = c^2 np(1-p)$.

Dealerraund

- **9: Inferences Involving One Population**
- 9.2 Inference about the Binomial Probability of Success

With
$$p' = \frac{x}{n}$$
, the constant is $c = \frac{1}{n}$, and

$$mean\left(\frac{x}{n}\right) = \left(\frac{1}{n}\right)mean(x) = \left(\frac{1}{n}\right)np = p$$

so the variance of $p' = \frac{x}{n}$ is variance $\left(\frac{x}{n}\right) = \frac{\sigma^2}{n^2} = \frac{p(1-p)}{n}$

standard error of
$$p' = \frac{x}{n}$$
 is $\sigma_{p'} = \sqrt{\frac{\sigma^2}{n^2}} = \sqrt{\frac{p(1-p)}{n}}$

That is where 1. and 2. in the green box below come from

If a random sample of size *n* is selected from a large population with p = P(success), then the sampling distribution of *p*' has:

1. A mean $\mu_{p'}$ equal to p

2. A standard error $\sigma_{p'}$ equal to

$$\frac{p(1-p)}{n}$$

3. An approximately normal distribution if *n* is sufficiently "large."

6: Normal Probability Distributions 6.5 Normal Approximation of the Binomial Distribution

If we flip the coin a large number of times

$$P(x) = \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x} \qquad x = 0, \dots, n$$

x = # of heads when we flip a coin n times

It gets tedious to find the *n*=14 probabilities!

6: Normal Probability Distributions 6.5 Normal Approximation of the Binomial Distribution

It gets tedious to find the *n*=14 probabilities!

n=14 p=1/2

MATH 1700

So what we can do is use a histogram representation,

6: Normal Probability Distributions 6.5 Normal Approximation of the Binomial Distribution

So what we can do is use a histogram representation, $\frac{n=14}{p=1/2}$

Then approximate binomial probabilities with normal areas.

6: Normal Probability Distributions 6.5 Normal Approximation of the Binomial Distribution

Approximate binomial probabilities with normal areas. Use a normal with $\mu = np$, $\sigma^2 = np(1-p)$

Rowe, D.B.

MATH 1700

6: Normal Probability Distributions 6.5 Normal Approximation of the Binomial Distribution

n=14, p=1/2

MATH 1700

We then approximate binomial probabilities with normal areas.

page 435

9: Inferences Involving One Population 9.2 Inference about the Binomial Probability of Success

In practice, using these guidelines will ensure normality of *x*:

- 1. The sample size *n* is greater than 20.
- 2. The product np and n(1-p) are both greater than 5.
- 3. The sample consists of less than 10% of the population.

1.
$$n \ge 20$$
, 2. $np \ge 5$ and $n(1-p) \ge 5$, 3. $\frac{n}{N} < .10$.

But we're not using x, we're scaling it and using $p' = \frac{x}{n}$.

It turns out that $p' = \frac{x}{n}$ also has an approx. normal distribution.

Need to convert to z's.

Figure left from and right modified Johnson & Kuby, 2012.

n=14, p=1/2Now we can determine probabilities with normal areas. $p' = \frac{x}{n}$ For p' For *x* P(3.5 < x < 4.5)P(.25 < p' < .32)P(3.5 - 7 < x - np < 4.5 - 7)P(.25 - .5 < p' - p < .32 - .5) $P\left(\frac{3.5-7}{\sqrt{3.5}} < \frac{x-np}{\sqrt{np(1-p)}} < \frac{4.5-7}{\sqrt{3.5}}\right) \qquad P\left(\frac{.25-.5}{\sqrt{\frac{5(1-.5)}{14}}} < \frac{p'-p}{\sqrt{\frac{p(1-p)}{n}}} < \frac{.32-.5}{\sqrt{\frac{5(1-.5)}{14}}}\right)$

Now we can look up areas.

- 9: Inferences Involving One Population
- 9.2 Inference about the Binomial Probability of Success

For a confidence interval, we would use

Confidence Interval for a Proportion

$$p' - z(\alpha/2)\sqrt{\frac{p'q'}{n}}$$
 to $p' + z(\alpha/2)\sqrt{\frac{p'q'}{n}}$
where $p' = \frac{x}{n}$ and $q' = (1-p')$.

Since we didn't know the true value for p, we estimate it by p'.

This is of the form point estimate \pm some amount .

(9.6)

- 9: Inferences Involving One Population
- 9.2 Inference about the Binomial Probability of Success

Example:

Dana randomly selected n=200 cars and found x=17 convertibles. Find the 90% CI for the proportion of cars that are convertibles.

$$p' = \frac{x}{n} = \frac{17}{200} \qquad p' \pm z(\alpha/2)\sqrt{\frac{p'q'}{n}} \\ \alpha = 0.1 \qquad \longrightarrow \qquad \frac{17}{200} \pm 1.65\sqrt{\frac{(17/200)(1-17/200)}{200}} \\ z(\alpha/2) = z(0.1/2) = 1.65 \qquad 0.052 \text{ to } 0.118$$

9: Inferences Involving One Population 9.2 Inference about the Binomial Probability of Success Determining the Sample Size

Using the error part of the CI, we determine the sample size n.

Maximum Error of Estimate for a Proportion

$$E = z(\alpha / 2) \sqrt{\frac{p'(1-p')}{n}}$$
(9.7)

Sample Size for 1- α Confidence Interval of p $n = \frac{[z(\alpha/2)]^2 p^* (1-p^*)}{E^2}$ From prior data, experience, gut feelings, séance. Or use 1/2. (9.8) where p^* and q^* are provisional values used for planning.

9: Inferences Involving One Population 9.2 Inference about the Binomial Probability of Success Determining the Sample Size

9: Inferences Involving One Population 9.2 Inference about the Binomial Probability of Success Determining the Sample Size

Example:

A supplier claims bolts are approx. 5% defective. Determine the sample size n if we want our estimate within ±0.02 with 90% confidence.

$$n = \frac{[z(\alpha/2)]^2 p^* (1-p^*)}{E^2} \qquad \begin{array}{c} 1-\alpha = 0.90 \\ z(0.1/2) = 1.65 \end{array} \qquad \begin{array}{c} E = 0.02 \\ p^* = 0.05 \end{array}$$

$$n = \frac{[1.65]^2 (0.05)(1 - 0.05)}{(0.02)^2} = \frac{0.12931875}{0.0004} = 323.4 \rightarrow n = 324$$

Chapter 9: Inferences Involving One Population

Questions?

Homework: Read Chapter 9.2 WebAssign Homework Chapter 9 # 75, 89