Class 18

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

Be The Difference.

Copyright by D.B. Rowe ¹

Agenda:

Recap Chapter 9.1

Lecture Chapter 9.2

Recap Chapter 9.1

9: Inferences Involving One Population 9.1 Inference about the Mean *μ* **(σ Unknown)**

In Chapter 8, we performed hypothesis tests on the mean by

1) assuming that \bar{x} was normally distributed (*n* "large"),

2) assuming the hypothesized mean μ_0 were true,

3) assuming that σ was known, so that we could form

$$
z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}
$$
 which with 1) – 3) has standard normal dist.

9: Inferences Involving One Population 9.1 Inference about the Mean *μ* **(σ Unknown)**

However, in real life, we never know σ for

$$
z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}
$$

so we would like to estimate σ by *s*, then use

$$
t^* = \frac{\overline{x} - \mu_0}{s / \sqrt{n}} \quad .
$$

But *t** does not have a standard normal distribution.

It has what is called a Student *t*-distribution.

9: Inferences Involving One Population 9.1 Inference about the Mean *μ* **(σ Unknown) Using the** *t***-Distribution Table**

Finding critical value from a Student *t*-distribution, *df*=*n*-1

t(*df*, α), *t* value with α area larger than it

Marquette University Mathematic Contract Contract

 $t(df, \alpha)$

 $\overline{0}$

 α

9.1 Inference about the Mean *μ* **(σ Unknown)**

Example: Find the value of *t*(10,0.05), $df=10$, $\alpha=0.05$.
Area in One Tail

9: Inferences Involving One Population 9.1 Inference about the Mean *μ* **(σ Unknown) Confidence Interval Procedure**

Discussed a confidence interval for the *μ* when σ was known,

Confidence Interval for Mean:

$$
\overline{x} - z(\alpha/2) \frac{\sigma}{\sqrt{n}} \quad \text{to} \quad \overline{x} + z(\alpha/2) \frac{\sigma}{\sqrt{n}}
$$
 (8.1)

now, with sigma unknown, the CI for the mean is

Confidence Interval for Mean:

$$
\overline{x} - t(df, \alpha / 2) \frac{s}{\sqrt{n}} \quad \text{to } \overline{x} + t(df, \alpha / 2) \frac{s}{\sqrt{n}}
$$
 (9.1)

9: Inferences Involving One Population 9.1 Inference about the Mean *μ* **(σ Unknown)**

Recap 9.1:

Essentially have new critical value, *t*(*df*,*α*) to look up

in a table when σ is unknown. Used same way as before.

σ assumed known σ assumed unknown

Lecture Chapter 9.2

We talked about a Binomial experiment with two outcomes. Each performance of the experiment is called a trial. Each trial is independent.

$$
P(x) = \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x}
$$

\n
$$
n = 1, 2, 3, ...
$$

\n
$$
0 \le p \le 1
$$

\n
$$
x = 0, 1 ... , n
$$

n = number of trials or times we repeat the experiment. *x* = the number of successes out of *n* trials. $p =$ the probability of success on an individual trial.

When we perform a binomial experiment we can estimate the probability of heads as

This is a point estimate. Recall the rule for a CI is

point estimate \pm some amount

9: Inferences Involving One Population

9.2 Inference about the Binomial Probability of Success

Background

In Statistics, if we have a random variable *x* with

mean(x) = μ and variance(x) = σ^2

then the mean and variance of *cx* where *c* is a constant is

mean(
$$
cx
$$
) = $c\mu$ and variance(cx) = $c^2\sigma^2$.

If *x* has a binomial distribution then

mean(
$$
cx
$$
) = cmp and variance(cx) = $c^2np(1-p)$.

Dookground

- **9: Inferences Involving One Population**
- **9.2 Inference about the Binomial Probability of Success**

Background
With
$$
p' = \frac{x}{n}
$$
, the constant is $c = \frac{1}{n}$, and
mean $\left(\frac{x}{n}\right) = \left(\frac{1}{n}\right)$ mean $(x) = \left(\frac{1}{n}\right)np = p$

so the variance of $p'=-$ is 2 2 \mathcal{X} \longrightarrow \mathcal{D}^2 $p(1-p)$ *n n n* $\left(x\right) \quad \sigma^2 \quad p(1-\right)$ $|-\frac{1}{2}|=\frac{3}{2}=$ $\binom{}{n}$ σ $\hspace{0.1cm}\rule{0.7cm}{0.8cm}\hspace{0.1cm}=\hspace{0.1cm} \stackrel{..}{-}\hspace{0.1cm}$ is variance *x p n* =

standard error of
$$
p' = \frac{x}{n}
$$
 is $\sigma_{p'} = \sqrt{\frac{\sigma^2}{n^2}} = \sqrt{\frac{p(1-p)}{n}}$.

That is where 1. and 2. in the green box below come from

If a random sample of size *n* is selected from a large population with $p = P$ (success), then the sampling distribution of *p*' has:

1. A mean μ_p equal to p

2. A standard error $\sigma_{p'}$ equal to

$$
\frac{p(1-p)}{n}
$$

3. An approximately normal distribution if *n* is sufficiently "large."

Marquette University Recall MATH MATH MATH 1700

6: Normal Probability Distributions 6.5 Normal Approximation of the Binomial Distribution

If we flip the coin a large number of times

$$
P(x) = \frac{n!}{x!(n-x)!} p^x (1-p)^{n-x} \qquad x = 0, ..., n
$$

 $x = #$ of heads when we flip a coin *n* times

$$
n=14
$$

$$
p=1/2
$$

It gets tedious to find the *n*=14 probabilities!

6: Normal Probability Distributions 6.5 Normal Approximation of the Binomial Distribution

It gets tedious to find the *n*=14 probabilities!

n=14 *p*=1/2

So what we can do is use a histogram representation,

6: Normal Probability Distributions 6.5 Normal Approximation of the Binomial Distribution

So what we can do is use a histogram representation, *n*=14 *p*=1/2

Then approximate binomial probabilities with normal areas.

Marquette University Recall MATH MATH MATH 1700

6: Normal Probability Distributions 6.5 Normal Approximation of the Binomial Distribution

Approximate binomial probabilities with normal areas. Use a normal with $\mu = np, \ \sigma^2 = np(1-p)$ *n*=14 *p*=1/2

Marquette University Recall MATH MATH MATH 1700

6: Normal Probability Distributions 6.5 Normal Approximation of the Binomial Distribution

n=14, *p*=1/2

We then approximate binomial probabilities with normal areas.

page 435

- **9: Inferences Involving One Population 9.2 Inference about the Binomial Probability of Success**
	- In practice, using these guidelines will ensure normality of *x*:
	- 1. The sample size *n* is greater than 20.
	- 2. The product *np* and *n*(1-*p*) are both greater than 5.
	- 3. The sample consists of less than 10% of the population.

1.
$$
n \ge 20
$$
, 2. $np \ge 5$ and $n(1-p) \ge 5$, 3. $\frac{n}{N} < 10$.
Rowe, D.B.

But we're not using x, we're scaling it and using $p' = \stackrel{\sim}{-}$. *x p* = *n*

It turns out that $p' = \stackrel{\lambda}{-}$ also has an approx. normal distribution. *x p* = *n*

Need to convert to *z*'s.

Now we can determine probabilities with normal areas. For *x* For *p*' $P(3.5 < x < 4.5)$ $P(3.5 - 7 < x - np < 4.5 - 7)$ $3.5 - 7$ $x - np$ $4.5 - 7$ 3.5 $\sqrt{np(1-p)}$ $\sqrt{3.5}$ $P\left|\frac{3.5-1}{2}\right|<\frac{x-np}{2}$ *np* (1 – *p* $\left(\frac{3.5-7}{\sqrt{2}} < \frac{x-np}{\sqrt{2}} < \frac{4.5-7}{\sqrt{2}}\right)$ $\left(\sqrt{3.5} \sqrt{np(1-p)} \sqrt{3.5}\right)$ $p\left(\frac{.25-.5}{.25-.5}\right)$ $\left(\sqrt{3.5}-\frac{.32-.5}{.25}\right)$ *n*=14, *p*=1/2 $P(.25 < p' < .32)$ $P(.25-.5 < p' - p < .32-.5)$ $.5(1-.5)$ \qquad \qquad 14 V *n* V 14 *p* $\frac{.25 - .5}{.25} < \frac{p - p}{.25}$ $p(1-p)$ *n* $\begin{pmatrix} 25-5 & p-p & 32-5 \end{pmatrix}$ $<$ $\frac{1}{\sqrt{2\pi}}$ $<$ −−− z $\sqrt{14} \sqrt{n} \sqrt{14}$ '*x p* =*n*

Now we can look up areas.

²⁴ **Rowe, D.B.**

z

- **9: Inferences Involving One Population**
- **9.2 Inference about the Binomial Probability of Success**

For a confidence interval, we would use

Confidence Interval for a Proportion

$$
p' - z(\alpha/2)\sqrt{\frac{p'q'}{n}}
$$
 to $p' + z(\alpha/2)\sqrt{\frac{p'q'}{n}}$ (9.6)

where
$$
p' = \frac{x}{n}
$$
 and $q' = (1 - p')$.

Since we didn't know the true value for *p*, we estimate it by *p*'.

This is of the form point estimate \pm some amount.

- **9: Inferences Involving One Population**
- **9.2 Inference about the Binomial Probability of Success**

Example:

Dana randomly selected *n*=200 cars and found *x*=17 convertibles. Find the 90% CI for the proportion of cars that are convertibles.

$$
p' = \frac{x}{n} = \frac{17}{200}
$$

\n
$$
\alpha = 0.1
$$

\n
$$
z(\alpha/2) = z(0.1/2) = 1.65
$$

\n
$$
p' \pm z(\alpha/2) \sqrt{\frac{p'q'}{n}}
$$

\n
$$
\frac{17}{200} \pm 1.65 \sqrt{\frac{(17/200)(1-17/200)}{200}}
$$

\n0.052 to 0.118

9: Inferences Involving One Population 9.2 Inference about the Binomial Probability of Success Determining the Sample Size

Using the error part of the CI, we determine the sample size *n*.

Maximum Error of Estimate for a Proportion

$$
E = z(\alpha/2)\sqrt{\frac{p'(1-p')}{n}}
$$
\n(9.7)

Sample Size for 1- *α* **Confidence Interval of** *p* $n = \frac{1}{\sqrt{1 - \frac{1}{c^2}}}$ gut feelings, séance. Or use 1/2. (9.8) where p^* and q^* are provisional values used for planning. 2 2 $[z(\alpha/2)]^2 p * (1-p^*)$ *n E* $=\frac{[\angle(u/2)] P^{\top}(1-1)}{2}$ α From prior data, experience, gut feelings, séance. Or use 1/2. over

9: Inferences Involving One Population 9.2 Inference about the Binomial Probability of Success Determining the Sample Size

9: Inferences Involving One Population 9.2 Inference about the Binomial Probability of Success Determining the Sample Size

Example:

A supplier claims bolts are approx. 5% defective. Determine the sample size *n* if we want our estimate within ±0.02 with 90% confidence.

$$
n = \frac{[z(\alpha/2)]^2 p * (1-p^*)}{E^2}
$$

$$
1 - \alpha = 0.90
$$

$$
z(0.1/2) = 1.65
$$

$$
p^* = 0.05
$$

$$
n = \frac{[1.65]^2 (0.05)(1 - 0.05)}{(0.02)^2} = \frac{0.12931875}{0.0004} = 323.4 \rightarrow n = 324
$$

Chapter 9: Inferences Involving One Population

Questions?

Homework: Read Chapter 9.2 WebAssign Homework Chapter 9 # 75, 89