Class 15

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

Be The Difference.

Copyright by D.B. Rowe

Agenda:

Review Chapters 6-8 (Exam 2 Chapters)

Just the highlights!

6: Normal Probability Distributions 6.1 Normal Probability Distributions

The mathematical formula for the normal distribution is (p 269):

$$
f(x) = \frac{e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^2}}{\sigma \sqrt{2\pi}}
$$

where
 $e = 2.718281828459046$
 $\pi = 3.141592653589793$
 μ = population mean
 σ = population std. devise
We will not use this formula.

where

e = 2.718281828459046…

π = 3.141592653589793…

 μ = population mean

 σ = population std. deviation

 $-\infty < x, \mu < +\infty$ $0<\sigma$

Figure from Johnson & Kuby, 2012.

6: Normal Probability Distributions 6.2 The Standard Normal Probability Distributions

Example: Here is a normal distribution with $\mu = 5$ and $\sigma^2 = 4$.

Let's say we want to know the red area under the normal distribution between $x_1 = 2.28$ and $x_2 = 9.28$.

What is the area under the normal distribution between these two values?

6: Normal Probability Distributions 6.2 The Standard Normal Probability Distributions

Example: Here is a normal distribution with $\mu = 5$ and $\sigma^2 = 4$.

 μ

 σ

−

x

=

z

6: Normal Probability Distributions 6.2 The Standard Normal Probability Distributions

Now we can simply look up the *z* areas in a table.

Appendix B Table 3 Page 716.

Standard normal curve $\mu = 0$ and $\sigma^2 = 1$.

6: Normal Probability Distributions

Appendix B TABLE 3
Cumulative Areas of the Standard Normal Distribution Table 3 Page 716

Rowe, D.B.

The entries in this table are the cumulative probabilities for the standard normal distribution z (that is, the normal distribution with mean 0 and standard deviation 1). The shaded area under the curve of the standard normal distribution represents the cumulative probability to the left of a z-value in the left-hand tail.

Second Decimal Place in *z*

7

6: Normal Probability Distributions Appendix B, Table 3, Page 716

TABLE 3

Cumulative Areas of the Standard Normal Distribution

The entries in this table are the cumulative probabilities for the standard normal distribution z (that is, the normal distribution with mean 0 and standard deviation 1). The shaded area under the curve of the standard normal distribution represents the cumulative probability to the left of a z-value in the left-hand tail.

o

z

 0.01 0.02 0.03 0.04 0.05 0.08 0.09 0.00 0.06 0.07 塞 -1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0681 -1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823 0.1112 0.1094 0.1057 -1.2 0.1151 0.1131 0.1075 0.1038 0.1020 0.1003 0.0985 -1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170 0.1446 0.1587 0.1563 0.1515 0.1492 0.1423 -1.0 0.1539 0.1469 0.1401 0.1379 0.4 0.35 *P*(*z*<-1.36)=Area less than -1.36. 0.3 0.25 We get this from Table 3. 0.2 0.15 Row labeled -1.3 over to column 0.1

 0.05

Labeled .06.

 $z_1 = -1.36$

z

2.14

 -1.36

6: Normal Probability Distributions Appendix B, Table 3, Page 717

TABLE 3

Cumulative Areas of the Standard Normal Distribution (continued)

The entries in this table are the cumulative probabilities for the standard normal distribution z (that is, the normal distribution with mean 0 and standard deviation 1). The shaded area under the curve of the standard normal distribution represents the cumulative probability to the left of a z-value in the left-hand tail.

6: Normal Probability Distributions

Appendix B, Table 3, Page 716-717

¹⁰ **Rowe, D.B.** Red Area=0.8969

 $z_1 = -1.36$

 $z_2 = 2.14$

 $z_1 = -1.36$

 $z_2 = 2.14$

6: Normal Probability Distributions 6.2 The Standard Normal Probability Distributions

Example: Here is a normal distribution with $\mu = 5$ and $\sigma^2 = 4$.

Area between x_1 and x_2 is same as the area between z_1 and z_2 .

6: Normal Probability Distributions 6.3 Applications of Normal Distributions

Example:

Assume that IQ scores are normally distributed with a mean *μ* of 100 and a standard deviation *σ* of 16.

If a person is picked at random, what is the probability that his or her IQ is between 100 and 115? i.e. $P(100 < x < 115)$?

6: Normal Probability Distributions 6.3 Applications of Normal Distributions

Figures from Johnson & Kuby, 2012.

6: Normal Probability Distributions 6.3 Applications of Normal Distributions

6: Normal Probability Distributions 6.4 Notation

6: Normal Probability Distributions 6.4 Notation

Example:

Same as finding *P*(*z*<*z*(0.05))=0.95.

1.645 Figures from Johnson & Kuby, 2012.

7: Sample Variability 7.2 The Sampling Distribution of Sample Means

When we take a random sample x_1, \ldots, x_n from a population,

one of the things that we do is compute the sample mean \bar{x} .

The value of \bar{x} is not μ . Each time we take a random sample

of size *n* (with replacement), we get a different set of values

 $x_1, \ldots,$ x_n and a different value for \overline{x} .

There is a distribution of possible \bar{x} 's.

7: Sample Variability 7.2 The Sampling Distribution of Sample Means

N=5 balls in bucket, select *n*=1 *with* replacement. Population data values: 0, 2, 4, 6, 8.

7.2 The Sampling Distribution of Sample Means

Example:

N=5 balls in bucket, select *n*=2 *with* replacement.

Population data values:

0, 2, 4, 6, 8.

25 possible samples

 $(0,0)$ $(2,0)$ $(4,0)$ $(6,0)$ $(8,0)$ (0,2) (2,2) (4,2) (6,2) (8,2)

25 possible

samples.

7.2 The Sampling Distribution of Sample Means Example: *N*=5, values: 0, 2, 4, 6, 8, *n*=2 (with replacement). Prob. of each samples mean = 1/25 = 0.04 0 1 2 3 4 1 2 3 4 5 2 3 4 5 6 3 4 5 6 7 4 5 6 7 8 0, one time 1, two times 2, three times 3, four times 4, five times 5, four times 6, three times 7, two times 8, one time *x x x x x x x x x* =========(0) 1/ 25 (1) 2 / 25 (2) 3 / 25 (3) 4 / 25 (4) 5 / 25 (5) 4 / 25 (6) 3 / 25 (7) 2 / 25 (8) 1/ 25 *P x P x P x P x P x P x P x P x P x* = = = = = = = = = = = = = = = = = = (0,4) (2,4) (4,4) (6,4) (8,4) (0,6) (2,6) (4,6) (6,6) (8,6) (0,8) (2,8) (4,8) (6,8) (8,8)

7.2 The Sampling Distribution of Sample Means

Example: *N*=5, values: 0, 2, 4, 6, 8, *n*=2 (with replacement).

7.2 The Sampling Distribution of Sample Means

Example: *N*=5, values: 0, 2, 4, 6, 8, *n*=1 or 2 (with replacement).

1. A mean μ_{x} equal to μ

2. A standard deviation σ_r equal to

7: Sample Variability

7.2 The Sampling Distribution of Sample Means

7.2 The Sampling Distribution of Sample Means

Sample distribution of sample means (SDSM):

If random samples of size *n*, are taken from ANY population with mean μ and standard deviation σ , then the SDSM has:

 σ

1. A mean $\mu_{\overline{x}}$ equal to μ

2. A standard deviation $\sigma_{\scriptscriptstyle \overline{x}}$ equal to $\overline{\sqrt{n}}$

Central Limit Theorem (CLT): The sampling distribution of sample means will more closely resemble the normal distribution as the sample size *n* increases.

7: Sample Variability 7.2 The Sampling Distribution of Sample Means

The CLT: Assume that we have a population (arbitrary distribution) with mean *μ* and standard deviation σ.

If we take random samples of size *n* (with replacement), then for "large" *n*, the distribution of the sample means the \bar{x} 's is approximately normally distributed with

$$
\mu_{\overline{x}} = \mu, \qquad \sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}
$$

 $\mu_{\overline{x}} = \mu$, $\sigma_{\overline{x}} = \frac{1}{\sqrt{n}}$
where in general $n \geq 30$ is sufficiently "large," but can be as small as15 or as big as 50 depending upon the shape of distribution!

7.3 Application of the Sampling Distribution of Sample Means

Example:

What is probability that sample mean \bar{x} from a random sample of $n=15$ heights is greater than 70" when $\mu = 67.5$ and $\sigma = 3.7$?

7.3 Application of the Sampling Distribution of Sample Means

Example:

What is probability that sample mean \bar{x} from a random sample of $n=15$ heights is greater than 70" when $\mu = 67.5$ and $\sigma = 3.7$? x from a random samp
en μ = 67.5 and σ = 3.7
27

7.3 Application of the Sampling Distribution of Sample Means

Example:

What is probability that sample mean \bar{x} from a random sample of $n=15$ heights is greater than 70" when $\mu = 67.5$ and $\sigma = 3.7$? x from a random samp
en μ = 67.5 and σ = 3.7
:

$$
d=\frac{b-\mu_{\overline{x}}}{\sigma_{\overline{x}}}
$$

7.3 Application of the Sampling Distribution of Sample Means

Example:

What is probability that sample mean \bar{x} from a random sample of *n*=15 heights is greater than 70" when μ = 67.5 and σ = 3.7? μ = 67.5 $\,$ and σ = 3.7 $\,$

7.3 Application of the Sampling Distribution of Sample Means

Example:

What is probability that sample mean \bar{x} from a random sample of *n*=15 heights is greater than 70" when μ = 67.0 and σ = 4.3?

8: Introduction to Statistical Inference 8.1 The Nature of Estimation

Point estimate for a parameter: A single number …, to estimate a parameter … usually the .. **sample statistic**.

i.e. \overline{x} is a point estimate for μ

Interval estimate: An interval bounded by two values and used to estimate the value of a population parameter. ….

i.e. $\bar{x} \pm$ (some amount) is an interval estimate for μ .

point estimate \pm some amount

8: Introduction to Statistical Inference 8.1 The Nature of Estimation

Significance Level: Probability parameter outside interval, *α*. *P*(μ not in $\bar{x} \pm$ some amount) = α

Level of Confidence 1-*α***:**

P(\bar{x} – some amount $< \mu < \bar{x}$ + some amount) = 1 – α

Confidence Interval:

point estimator \pm some amount that depends on

confidence level

Marquette University Mathematic Contract Contract

8: Introduction to Statistical Inference 8.2 Estimation of Mean *μ* **(***σ* **Known)** By SDSM

What this implies is that
$$
z = \frac{\overline{x} - \mu_{\overline{x}}}{\sigma_{\overline{x}}}
$$

has an approximate standard normal distribution!

$$
P(-1.96 < z < 1.96) = 0.95 \qquad \text{a=05}
$$

Or more generally,

Rowe, D.B.

$$
P(-z(\alpha/2) < z < z(\alpha/2)) = 1 - \alpha
$$

 $z(\alpha/2)$ called the confidence coefficient.

 $\mu_{\overline{\chi}} = \mu, \qquad \sigma_{\overline{\chi}} =$

n

 σ

8: Introduction to Statistical Inference 8.2 Estimation of Mean *μ* **(***σ* **Known)** $P(-z(\alpha/2) < z < z(\alpha/2)) = 1 - \alpha$

8: Introduction to Statistical Inference 8.2 Estimation of Mean *μ* **(***σ* **Known)**

Thus, a $(1-\alpha) \times 100\%$ confidence interval for μ is

$$
\overline{x} \pm z(\alpha/2) \frac{\sigma}{\sqrt{n}}
$$

which if *α*=0.05, a 95% confidence interval for *μ* is $x \pm 1.96$ — . $\overline{x} \pm 1.96 \frac{\sigma}{\overline{c}}$ *n z*(.025))=1.96

Confidence Interval for Mean:

$$
\overline{x} - z(\alpha/2) \frac{\sigma}{\sqrt{n}} \quad \text{to} \quad \overline{x} + z(\alpha/2) \frac{\sigma}{\sqrt{n}}
$$
 (8.1)

8: Introduction to Statistical Inference 8.2 Estimation of Mean *μ* **(***σ* **Known)**

Philosophically, *μ* is fixed and the interval varies.

If we take a sample of data, x_1, \ldots, x_n and determine a confidence interval from it, we get.

$$
\overline{x} \pm z(\alpha/2) \frac{\sigma}{\sqrt{n}}
$$

If we had a different sample of data, y_1 , y_n we would have determined a different confidence interval.

$$
\overline{y} \pm z(\alpha/2) \frac{\sigma}{\sqrt{n}}
$$

different interval of same width *μ*

Figure from Johnson & Kuby, 2012.

36

each sample a

8: Introduction to Statistical Inference 8.2 Estimation of Mean *μ* **(***σ* **Known)**

We never truly know if our CI from our sample of data will

contain the true population mean *μ*.

But we do know that there is a $(1-\alpha) \times 100\%$ chance

that a confidence interval from a sample of data will contain *μ*.

```
Example 1: Friend's Party.
H_0: "The party will be a dud"
vs.
```

```
H_a: "The Party will be a great time"
```
Example 2: Math 1700 Students Height H_0 : The mean height of Math 1700 students is 69", μ = 69". vs.

 H_a : The mean height of Math 1700 students is not 69", μ ≠ 69".

Example 2: Math 1700 Height *H*₀: μ = 69" vs. *Ha* : *μ* ≠ 69" If we reject H_0 and it is true, we made in error in judgment. If we do not reject H_0 and it is false, we have made an error in judgment. Four outcomes from a hypothesis test. *μ* = 69 *μ* ≠ 69 Fail to reject H_0 . **Correct** Decision Type II Error Reject H_0 . Type I Error **Correct** Decision

Type I Error: ...true null hypothesis H_0 is rejected.

Level of Significance (*α***):** The probability of committing a type I error. (Sometimes α is called the false positive rate.)

Type II Error: … favor … null hypothesis that is actually false.

Type II Probability (*β***):** The probability of committing a type II error.

We need to determine a measure that will quantify what we should believe.

Test Statistic: A random variable whose value is calculated from the sample data and is used in making the decision "reject H_0 : or "fail to reject H_0 ."

Example: Friend's Party Fraction of parties that were good.

Example: Math 1700 Heights Sample mean height.

HYPOTHESIS TESTING PAIRS

Null Hypothesis

- 1. Greater than or equal to (\ge) 2. Less than or equal to (\leq)
- 3. Equal to $(=)$

Alternative Hypothesis

Less than $\left\langle \leq\right\rangle$ Greater than $(>)$ Not equal to (\neq)

TABLE 8.6 Common Phrases and Their Negations

Figure from Johnson & Kuby, 2012.

- **8: Introduction to Statistical Inference**
- **8.4 Hypothesis Test of Mean (σ Known): Probability Approach**

8: Introduction to Statistical Inference

8.4 Hypothesis Test of Mean (σ Known): Probability Approach

<u>Step 1 The Set-Up: Null (H_0) **</u> and alternative** (H_a) **hypotheses** *H*₀: *μ* = 69" vs. *H_a*: *μ* ≠ 69" **Step 2 The Hypothesis Test Criteria: Test statistic.** $z^* = \frac{x - \mu_0}{\sigma}$ σ known, *n* is "large" so by CLT \bar{x} is normal $=\frac{x-\mu_{0}}{2}$ *x* $\frac{x}{\sigma/\sqrt{n}}$ o known, *n* is large so by CLT x
 p 3 The Sample Evidence: Calculate test statis
 $\frac{\bar{x} - \mu_0}{\sqrt{n}} = \frac{67.2 - 69}{\sqrt{17}} = -1.74$ n=15, $\bar{x} = 67$ *z* σ / \sqrt{n} *z** is normal **Step 3 The Sample Evidence: Calculate test statistic.** $\overline{x} - \mu_0 = \frac{67.2 - 69}{-1.74}$ n=15, $\overline{x} = 67.2$, $* = \frac{\overline{x} - \mu_0}{\overline{x}} = \frac{67.2 - 69}{\overline{x}} = -1.74$ *n*=15, \bar{x} =67.2, σ = 4 *x* $\mu_{\scriptscriptstyle (}$ $- \mu_{0} \quad 0.112$ *z* $/\sqrt{n}$ 4/ $\sqrt{15}$ σ *n* normal **Step 4 The Probability Distribution:** 0.0409 0.0409 $P(z > |z^*|) = p -$ value $\rightarrow 0.0819$ -1.74 1.74 **Step 5 The Results:** $-|z^{\star}|$ $|z^{\star}|$ Ω Z. p – value \le α , <code>reject H_0 , $\boxed{p-\textnormal{value}{>}\alpha}$ fail to reject H_0 </code> $\alpha = 0.05$

- **8: Introduction to Statistical Inference**
- **8.4 Hypothesis Test of Mean (σ Known): Probability Approach**

HYPOTHESIS TESTING PAIRS

 $H_0: \mu \ge 69$ " vs. $H_a: \mu < 69$ "

Figure from Johnson & Kuby, 2012.

8: Introduction to Statistical Inference

8.4 Hypothesis Test of Mean (σ Known): Probability Approach

<u>Step 1 The Set-Up: Null (H_0) **</u> and alternative** (H_a) **hypotheses** *H*₀: *μ* ≥ 69" vs. *H_a*: *μ* < 69" **Step 2 The Hypothesis Test Criteria: Test statistic.** $z^* = \frac{x - \mu_0}{\sigma}$ σ known, *n* is "large" so by CLT \bar{x} is normal $=\frac{x-\mu_{0}}{2}$ *x* $* = \frac{x - \mu_0}{\sigma / \sqrt{n}}$ o known, *n* is large so by CLT x
 p 3 The Sample Evidence: Calculate test statis
 $= \frac{\overline{x} - \mu_0}{\sqrt{n}} = \frac{67.2 - 69}{\sqrt{36}} = -1.74$ n=15, $\overline{x} = 67$ *z* σ / \sqrt{n} *z** is normal **Step 3 The Sample Evidence: Calculate test statistic.** $\overline{x} - \mu_0 = \frac{67.2 - 69}{-1.74}$ n=15, \overline{x} =67.2, $* = \frac{\overline{x} - \mu_0}{\overline{x}} = \frac{67.2 - 69}{\overline{x}} = -1.74$ $n=15$, $\bar{x} = 67.2$, $\sigma = 4$ *x* $\mu_{\scriptscriptstyle (}$ $- \mu_{0} \quad 0.112$ *z* $/\sqrt{n}$ 4/ $\sqrt{15}$ σ *n* normal **Step 4 The Probability Distribution:** 0.0409 $P(z < z^*) = p -$ value \rightarrow 0.0409 [−]1.74 **Step 5 The Results:** $-|z\star|$ θ Z $\overline{p-\text{value}\leq\alpha}$, reject $\overline{H_0}, p-\text{value}\!>\!\alpha$ fail to reject $\overline{H_0}$ $\alpha = 0.05$

- **8: Introduction to Statistical Inference**
- **8.4 Hypothesis Test of Mean (σ Known): Probability Approach**

Figure from Johnson & Kuby, 2012.

8: Introduction to Statistical Inference

8.4 Hypothesis Test of Mean (σ Known): Probability Approach

<u>Step 1 The Set-Up: Null (H_0) **</u> and alternative** (H_a) **hypotheses** *H*₀: *μ* ≤ 69" vs. *H_a*: *μ* > 69" **Step 2 The Hypothesis Test Criteria:** Test statistic. $z^* = \frac{x - \mu_0}{\sigma}$ σ known, *n* is "large" so by CLT \bar{x} is normal $=\frac{x-\mu_{0}}{2}$ *x* $\frac{x}{\sigma/\sqrt{n}}$ o known, *n* is large so by CLT x
 p 3 The Sample Evidence: Calculate test statis
 $\frac{\bar{x} - \mu_0}{\sqrt{n}} = \frac{67.2 - 69}{\sqrt{17}} = -1.74$ n=15, $\bar{x} = 67$ *z* σ / \sqrt{n} *z** is normal **Step 3 The Sample Evidence: Calculate test statistic.** $\overline{x} - \mu_0 = \frac{67.2 - 69}{-1.74}$ n=15, \overline{x} =67.2, $* = \frac{\overline{x} - \mu_0}{\overline{x}} = \frac{67.2 - 69}{\overline{x}} = -1.74$ $n=15$, $\bar{x} = 67.2$, $\sigma = 4$ *x* $\mu_{\scriptscriptstyle (}$ $- \mu_{0} \quad 0.112$ *z* $/\sqrt{n}$ 4/ $\sqrt{15}$ σ *n* normal 0.9591 **Step 4 The Probability Distribution:** $P(z > z^*) = p -$ value \rightarrow 0.9691 [−]1.74 **Step 5 The Results:** $-|z\star|$ Ω p – value \le α , <code>reject H_0 , $\boxed{p-\textnormal{value}{>}\alpha}$ fail to reject H_0 </code> $\alpha = 0.05$

8: Introduction to Statistical Inference

8.4 Hypothesis Test of Mean (σ Known): Probability Approach

<u>Step 1 The Set-Up: Null (H_0) **</u> and alternative** (H_a) **hypotheses** *H*₀: *μ* = 69" vs. *H_a*: *μ* ≠ 69" **Step 2 The Hypothesis Test Criteria: Test statistic.** $z^* = \frac{x - \mu_0}{\sigma}$ σ known, *n* is "large" so by CLT \bar{x} is normal $=\frac{x-\mu_{0}}{2}$ *x* $\frac{x}{\sigma/\sqrt{n}}$ o known, *n* is large so by CLT x
 p 3 The Sample Evidence: Calculate test statis
 $\frac{\bar{x} - \mu_0}{\sqrt{n}} = \frac{67.2 - 69}{\sqrt{17}} = -1.74$ n=15, $\bar{x} = 67$ *z* σ / \sqrt{n} *z** is normal **Step 3 The Sample Evidence: Calculate test statistic.** $\overline{x} - \mu_0 = \frac{67.2 - 69}{-1.74}$ n=15, $\overline{x} = 67.2$, $* = \frac{\overline{x} - \mu_0}{\overline{x}} = \frac{67.2 - 69}{\overline{x}} = -1.74$ *n*=15, \bar{x} =67.2, σ = 4 *x* $\mu_{\scriptscriptstyle (}$ $- \mu_{0} \quad 0.112$ *z* $/\sqrt{n}$ 4/ $\sqrt{15}$ σ *n* normal **Step 4 The Probability Distribution:** 0.0409 0.0409 $P(z > |z^*|) = p -$ value $\rightarrow 0.0819$ -1.74 1.74 **Step 5 The Results:** $-|z^{\star}|$ $|z^{\star}|$ Ω Z. p – value \le α , <code>reject H_0 , $\boxed{p-\textnormal{value}{>}\alpha}$ fail to reject H_0 </code> $\alpha = 0.05$

 $* = \frac{\pi}{\sigma / \sqrt{n}}$

x

 $=\frac{\lambda}{\sqrt{2\pi}}$

 σ

z

8: Introduction to Statistical Inference

8.5 Hypothesis Test of Mean (σ Known): Classical Approach

<u>Step 1 The Set-Up: Null (H_0) **</u> and alternative** (H_a) **hypotheses** *H*₀: *μ* = 69" vs. *H_a*: *μ* ≠ 69"

Step 2 The Hypothesis Test Criteria: Test statistic.

 $\sigma^* = \frac{x - \mu_0}{\sigma}$ **o** known, *n* is "large" so by CLT \overline{x} is normal σ / \sqrt{n} *z****** is normal $\frac{x}{\sigma/\sqrt{n}}$ o known, *n* is large so by CLT x
 p 3 The Sample Evidence: Calculate test statis
 $\frac{\bar{x} - \mu_0}{\sqrt{n}} = \frac{67.2 - 69}{\sqrt{130}} = -1.74$ n=15, $\bar{x} = 67$

Step 3 The Sample Evidence: Calculate test statistic.

$$
z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{67.2 - 69}{4 / \sqrt{15}} = -1.74
$$
 n=15, \overline{x} =67.2, σ = 4
normal

n

 $\mu_{\scriptscriptstyle (}$

Step 4 The Probability Distribution: *α* = 0.05, *z*(*α*/2)=1.96

Step 5 The Results:

 $|z^*|$ > $z(\alpha$ / 2) , reject H_0 , $|\,z^*| \leq z(\alpha$ / 2) fail to reject H_0

8: Introduction to Statistical Inference 8.5 Hypothesis Test of Mean (σ Known): Classical Approach

There are three possible hypothesis pairs for the mean.

 $H_0: \mu \ge \mu_0$ vs. $H_a: \mu < \mu_0$ **Critical** Region Reject Non-Critical Region Fail to Reject *z* **CV* 0 Reject H_0 if less than data indicates $\mu < \mu_0$ because \bar{x} is "a lot" smaller than μ_{0}^{\parallel} 0 / *x z n* $=\frac{\lambda}{\sqrt{2\pi}}$ $\mu_{\scriptscriptstyle (}$ σ * $-z(\alpha)$

Rowe, D.B.

z

8: Introduction to Statistical Inference 8.5 Hypothesis Test of Mean (σ Known): Classical Approach

There are three possible hypothesis pairs for the mean.

 $H_0: \mu \leq \mu_0$ vs. $H_a: \mu > \mu_0$ Reject H_0 if greater then 0 / *x z n* $=\frac{\lambda}{\sqrt{2\pi}}$ $\mu_{\scriptscriptstyle (}$ σ * $z(\alpha)$

data indicates $\mu > \mu_0$ because \bar{x} is "a lot" larger than $\mu_{\scriptscriptstyle 0}$

8: Introduction to Statistical Inference 8.5 Hypothesis Test of Mean (σ Known): Classical Approach

There are three possible hypothesis pairs for the mean.

Exam 2 Next Class

