MATH 1700

Class 15

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

Be The Difference.

Copyright by D.B. Rowe

Agenda:

Review Chapters 6-8 (Exam 2 Chapters)

Just the highlights!

6: Normal Probability Distributions 6.1 Normal Probability Distributions

The mathematical formula for the normal distribution is (p 269):

$$f(x) = \frac{e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}}{\sigma\sqrt{2\pi}}$$

where

e = 2.718281828459046...

 π = 3.141592653589793...

 $\mu = population mean$

 σ = population std. deviation

We will not use this formula.

 $-\infty < x, \mu < +\infty$ $0 < \sigma$

Figure from Johnson & Kuby, 2012.

6: Normal Probability Distributions 6.2 The Standard Normal Probability Distributions

Example: Here is a normal distribution with $\mu = 5$ and $\sigma^2 = 4$.

Let's say we want to know the red area under the normal distribution between $x_1 = 2.28$ and $x_2 = 9.28$.

What is the area under the normal distribution between these two values?

MATH 1700

6: Normal Probability Distributions 6.2 The Standard Normal Probability Distributions $z = \frac{x - \mu}{-}$

Example: Here is a normal distribution with $\mu = 5$ and $\sigma^2 = 4$.

6: Normal Probability Distributions 6.2 The Standard Normal Probability Distributions

Now we can simply look up the z areas in a table.

Appendix B Table 3 Page 716. Standard normal curve $\mu = 0$ and $\sigma^2 = 1$.

6: Normal Probability Distributions

Appendix B TABLE 3 Cumulativ Table 3 The entrie normal dis standard c normal dis standard c

Rowe, D.B.

Cumulative Areas of the Standard Normal Distribution

The entries in this table are the cumulative probabilities for the standard normal distribution z (that is, the normal distribution with mean 0 and standard deviation 1). The shaded area under the curve of the standard normal distribution represents the cumulative probability to the left of a z-value in the **left-hand tail**.

Second Decimal Place in z

	z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	
	-5.0 -4.5 -4.0	0.0000003 0.000003 0.00003	0.00003	0.00003	0.00003	0.00003	0.00003	0.00002	0.00002	0.00002	0.00002	
ice in <i>z</i>	-3.9	0.00005	0.00005	0.00004	0.00004	0.00004	0.00004	0.00004	0.00004	0.00003	0.00003	
	-3.8	0.00007	0.00007	0.00007	0.00006	0.00006	0.00006	0.00006	0.00005	0.00005	0.00005	
	-3.7	0.00011	0.00010	0.00010	0.00010	0.00009	0.00009	0.00008	0.00008	0.00008	0.00008	
	-3.6	0.0002	0.0002	0.0002	0.00014	0.00014	0.00013	0.00013	0.00012	0.00012	0.00011	
	-3.5	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	0.0002	
Decimal Place	-3.4	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0003	0.0002	
	-3.3	0.0005	0.0005	0.0005	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	0.0004	
	-3.2	0.0007	0.0007	0.0006	0.0006	0.0006	0.0006	0.0006	0.0005	0.0005	0.0005	
	-3.1	0.0010	0.0009	0.0009	0.0009	0.0008	0.0008	0.0008	0.0008	0.0007	0.0007	
	-3.0	0.0014	0.0013	0.0013	0.0012	0.0012	0.0011	0.0011	0.0011	0.0010	0.0010	
First D	-2.9	0.0019	0.0018	0.0018	0.0017	0.0016	0.0016	0.0015	0.0015	0.0014	0.0014	
	-2.8	0.0026	0.0025	0.0024	0.0023	0.0023	0.0022	0.0021	0.0021	0.0020	0.0019	
	-2.7	0.0035	0.0034	0.0033	0.0032	0.0031	0.0030	0.0029	0.0028	0.0027	0.0026	
	-2.6	0.0047	0.0045	0.0044	0.0043	0.0042	0.0040	0.0039	0.0038	0.0037	0.0036	
	-2.5	0.0062	0.0060	0.0059	0.0057	0.0055	0.0054	0.0052	0.0051	0.0049	0.0048	
	-2.4	0.0082	0.0080	0.0078	0.0076	0.0073	0.0071	0.0070	0.0068	0.0066	0.0064	
	-2.3	0.0107	0.0104	0.0102	0.0099	0.0096	0.0094	0.0091	0.0089	0.0087	0.0084	
	-2.2	0.0139	0.0136	0.0132	0.0129	0.0126	0.0122	0.0119	0.0116	0.0113	0.0110	
	-2.1	0.0179	0.0174	0.0170	0.0166	0.0162	0.0158	0.0154	0.0150	0.0146	0.0143	
	-2.0	0.0228	0.0222	0.0217	0.0212	0.0207	0.0202	0.0197	0.0192	0.0188	0.0183	
	-1.9	0.0287	0.0281	0.0274	0.0268	0.0262	0.0256	0.0250	0.0244	0.0239	0.0233	
	-1.8	0.0359	0.0352	0.0344	0.0336	0.0329	0.0322	0.0314	0.0307	0.0301	0.0294	
	-1.7	0.0446	0.0436	0.0427	0.0418	0.0409	0.0401	0.0392	0.0384	0.0375	0.0367	
	-1.6	0.0548	0.0537	0.0526	0.0516	0.0505	0.0495	0.0485	0.0475	0.0465	0.0455	
	-1.5	0.0668	0.0655	0.0643	0.0630	0.0618	0.0606	0.0594	0.0582	0.0571	0.0559	

7

6: Normal Probability Distributions Appendix B, Table 3, Page 716

TABLE 3

Cumulative Areas of the Standard Normal Distribution

The entries in this table are the cumulative probabilities for the standard normal distribution z (that is, the normal distribution with mean 0 and standard deviation 1). The shaded area under the curve of the standard normal distribution represents the cumulative probability to the left of a z-value in the **left-hand tail**.

0

Z

We get this from Table 3. Row labeled -1.3 over to column Labeled .06.

Rowe, D.B.

 $z_1 = -1.36$

6: Normal Probability Distributions Appendix B, Table 3, Page 717

TABLE 3

Cumulative Areas of the Standard Normal Distribution (continued)

The entries in this table are the cumulative probabilities for the standard normal distribution z (that is, the normal distribution with mean 0 and standard deviation 1). The shaded area under the curve of the standard normal distribution represents the cumulative probability to the left of a z-value in the **left-hand tail**.

6: Normal Probability Distributions

Appendix B, Table 3, Page 716-717

Rowe, D.B. Red Area=0.8969

10

 $z_1 = -1.36$

 $z_2 = 2.14$

MATH 1700

 $z_1 = -1.36$

 $z_2 = 2.14$

6: Normal Probability Distributions 6.2 The Standard Normal Probability Distributions

Example: Here is a normal distribution with $\mu = 5$ and $\sigma^2 = 4$.

Area between x_1 and x_2 is same as the area between z_1 and z_2 .

6: Normal Probability Distributions 6.3 Applications of Normal Distributions

Example:

Assume that IQ scores are normally distributed with a mean μ of 100 and a standard deviation σ of 16.

If a person is picked at random, what is the probability that his or her IQ is between 100 and 115? i.e. P(100 < x < 115) ?

MATH 1700

6: Normal Probability Distributions 6.3 Applications of Normal Distributions

Figures from Johnson & Kuby, 2012.

MATH 1700

6: Normal Probability Distributions 6.3 Applications of Normal Distributions

	0.00									
0.9	0.8159	0.8186	0.8212	0.8238	0.8264	0.8289	0.8315	0.8340	0.8365	0.8389

6: Normal Probability Distributions 6.4 Notation

Figures from Johnson & Kuby, 2012.

6: Normal Probability Distributions 6.4 Notation

Example:

Same as finding P(z < z(0.05)) = 0.95.

z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
0.0 0.1 0.2 0.3 0.4	0.5000 0.5398 0.5793 0.6129 0.6554	0.5040 0.5438 0.5832 0.6217 0.6591	0.5000 0.5478 0.5871 0.6255 0.6628	0.5120 0.5517 0.5910 0.6293 0.6664	0.5160 0.5557 0.5948 0.6331 0.6700	0.5199 0.5596 0.5987 0.6368 0.6736	0.5239 0.5636 0.6026 0.6406 0.6772	0.5279 0.5675 0.6064 0.6443 0.6808	0.5319 0.5714 0.6103 0.6480 0.6844	0.5359 0.5754 0.6141 0.6517 0.6879
0.5 0.6 0.7 0.9	0.6915 0.7258 0.7580 0.7881 0.8159	0.6950 0.7291 0.7612 0.7910 0.8186	0.6985 0.7324 0.7642 0.7939 0.8212	0.7019 0.7357 0.7673 0.7967 0.8238	0.7054 0.7389 0.7704 0.7996 0.8264	0.7088 0.7422 0.7734 0.6023 0.8289	0.7123 0.7454 0.7764 0.6051 0.8315	0.7157 0.7486 0.7794 0.8079 0.8340	0.7190 0.7518 0.7823 0.8106 0.8365	0.7224 0.7549 0.7852 0.8133 0.8389

+1.5	0.9332	0.9345	0.9357	0.9370	0.9382	0.9394	0.9406	0.9418	0.9430	0.9441
1.6	0.9452	0.9463	0.9474	0.9485	0.9495	0.9505	0.9515	0.9525	0.9535	0.9545
1.7	0.9554	0.9564	0.9573	0.9582	0.9591	0.9599	0.9608	0.9616	0.9625	0.9633
1.8	0.9641	0.9649	0.9656	0.9664	0.9671	0.9678	0.9686	0.9693	0.9700	0.9706
1.9	0.9713	0.9719	0.9726	0.9732	0.9738	0.9744	0.9750	0.9756	0.9762	0.9767
2.0 2.1 2.2 2.3 2.4	0.9773 0.9821 0.9861 0.9893 0.9918	0.9278 0.9825 0.9865 0.9895 0.9895 0.9920	0.9283 0.9630 0.9868 0.9898 0.99922	0.9288 0.9834 0.9821 0.9901 0.9925	0.9293 0.9838 0.9825 0.9904 0.9927	0.9298 0.9842 0.9878 0.9906 0.9929	0.9803 0.9846 0.9881 0.9909 0.9931	0.9808 0.9850 0.9884 0.9911 0.9932	0.9812 0.9854 0.9887 0.9913 0.9934	0.9817 0.9857 0.9890 0.9916 0.9936

Figures from Johnson & Kuby, 2012.

7: Sample Variability 7.2 The Sampling Distribution of Sample Means

When we take a random sample x_1, \ldots, x_n from a population,

one of the things that we do is compute the sample mean \overline{x} .

The value of \overline{x} is not μ . Each time we take a random sample

of size *n* (with replacement), we get a different set of values

 x_1, \ldots, x_n and a different value for \overline{x} .

There is a distribution of possible \overline{x} 's.

7: Sample Variability 7.2 The Sampling Distribution of Sample Means

N=5 balls in bucket, select n=1 with replacement. Population data values: 0, 2, 4, 6, 8.

7.2 The Sampling Distribution of Sample Means

Example:

N=5 balls in bucket, select n=2 with replacement.

Population data values:

0, 2, 4, 6, 8.

(0,0)	(2,0)	(4,0)	(6,0)	(8,0)
(0,2)	(2,2)	(4,2)	(6,2)	(8,2)
(0, 4)	(2,4)	(4, 4)	(6,4)	(8,4)
(0,6)	(2,6)	(4,6)	(6,6)	(8,6)
(0,8)	(2,8)	(4,8)	(6,8)	(8,8)

25 possible samples

MATH 1700

 $25 \ possible \qquad (0,0) \quad (2,0) \quad (4,0) \quad (6,0) \quad (8,0)$

7: Sample Variability
$$25 \text{ possible} (0,0) (2,0) (4,0) (6,0) (8,0) (3,0) (3,0) (2,2) (4,2) (6,2) (8,2) (3,2) (4,3) (6,6) (8,6) (8,6) (0,6) (2,6) (4,6) (6,6) (8,6) (0,8) (2,8) (4,8) (6,8) (8,8) (6$$

7: Sample Variability 7.2 The Sampling Distribution of Sample Means

Example: *N*=5, values: 0, 2, 4, 6, 8, *n*=2 (with replacement).

7: Sample Variability 7.2 The Sampling Distribution of Sample Means

Example: *N*=5, values: 0, 2, 4, 6, 8, *n*=1 or 2 (with replacement).

MATH 1700

1. A mean μ_x equal to μ

2. A standard deviation σ_{τ} equal to

7: Sample Variability

7.2 The Sampling Distribution of Sample Means

7.2 The Sampling Distribution of Sample Means

Sample distribution of sample means (SDSM):

If random samples of size *n*, are taken from ANY population with mean μ and standard deviation σ , then the SDSM has:

1. A mean $\mu_{\bar{x}}$ equal to μ

2. A standard deviation $\sigma_{\bar{x}}$ equal to \sqrt{n}

Central Limit Theorem (CLT): The sampling distribution of sample means will more closely resemble the normal distribution as the sample size *n* increases.

7: Sample Variability 7.2 The Sampling Distribution of Sample Means

The CLT: Assume that we have a population (arbitrary distribution) with mean μ and standard deviation σ .

If we take random samples of size n (with replacement), then for "large" n, the distribution of the sample means the \overline{x} 's is approximately normally distributed with

$$\mu_{\overline{x}} = \mu, \qquad \sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$$

where in general $n \ge 30$ is sufficiently "large," but can be as small as 15 or as big as 50 depending upon the shape of distribution!

7.3 Application of the Sampling Distribution of Sample Means

Example:

What is probability that sample mean \overline{x} from a random sample of *n*=15 heights is greater than 70" when $\mu = 67.5$ and $\sigma = 3.7$?

7.3 Application of the Sampling Distribution of Sample Means

Example:

What is probability that sample mean \overline{x} from a random sample of *n*=15 heights is greater than 70" when $\mu = 67.5$ and $\sigma = 3.7$?

7.3 Application of the Sampling Distribution of Sample Means

Example:

What is probability that sample mean \overline{x} from a random sample of *n*=15 heights is greater than 70" when $\mu = 67.5$ and $\sigma = 3.7$?

$$d = \frac{b - \mu_{\overline{x}}}{\sigma_{\overline{x}}}$$

7.3 Application of the Sampling Distribution of Sample Means

Example:

What is probability that sample mean \overline{x} from a random sample of *n*=15 heights is greater than 70" when $\mu = 67.5$ and $\sigma = 3.7$?

7.3 Application of the Sampling Distribution of Sample Means

Example:

What is probability that sample mean \overline{x} from a random sample of *n*=15 heights is greater than 70" when $\mu = 67.0$ and $\sigma = 4.3$?

	z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09
Rowe, D.B.	2.7	0.9965	0,9966	0.9967	0,9968	0,9969	0.9970	0.9971	0.9972	0.9973	0.9974

8: Introduction to Statistical Inference 8.1 The Nature of Estimation

Point estimate for a parameter: A single number ..., to estimate a parameter ... usually the .. **sample statistic**.

i.e. \overline{x} is a point estimate for μ

Interval estimate: An interval bounded by two values and used to estimate the value of a population parameter.

i.e. $\overline{x} \pm (\text{some amount})$ is an interval estimate for μ .

point estimate ± some amount

8: Introduction to Statistical Inference 8.1 The Nature of Estimation

Significance Level: Probability parameter outside interval, α . $P(\mu \text{ not in } \overline{x} \pm \text{ some amount}) = \alpha$

Level of Confidence 1- α :

 $P(\overline{x} - \text{some amount} < \mu < \overline{x} + \text{some amount}) = 1 - \alpha$

Confidence Interval:

point estimator \pm some amount that depends on

confidence level

Marquette University

8: Introduction to Statistical Inference 8.2 Estimation of Mean μ (σ Known) By SDSM

What this implies is that
$$z = \frac{x - \mu_{\overline{x}}}{\sigma_{\overline{x}}}$$

$$P(-1.96 < z < 1.96) = 0.95$$
 $\alpha = .05$

Or more generally,

$$P(-z(\alpha / 2) < z < z(\alpha / 2)) = 1 - \alpha$$

 $z(\alpha/2)$ called the confidence coefficient.

 $\mu_{\overline{x}} = \mu, \qquad \sigma_{\overline{x}} = -$

8: Introduction to Statistical Inference 8.2 Estimation of Mean μ (σ Known)

 $P(-z(\alpha / 2) < z < z(\alpha / 2)) = 1 - \alpha$ $z(\alpha/2) > z$ $z(\alpha/2) > \frac{\overline{x} - \mu_{\overline{x}}}{\sigma_{\overline{x}}}$ With some algebra, we saw that $-z(\alpha/2) < z$ and $-z(\alpha/2) < \frac{\overline{x}-\mu_{\overline{x}}}{\sigma}$ $z(\alpha/2)\frac{\sigma}{\sqrt{n}} > \overline{x}-\mu$ $-z(\alpha/2)\frac{\sigma}{\sqrt{n}} < \overline{x}-\mu$ $z(\alpha/2)\frac{\sigma}{\sqrt{n}}-\overline{x} > -\mu$ $-z(\alpha/2)\frac{\sigma}{\sqrt{n}}-\overline{x} < -\mu$ $\overline{x} - z(\alpha/2) \frac{\sigma}{\sqrt{n}} < \mu$ $\overline{x} + z(\alpha/2) \frac{\sigma}{\sqrt{n}} > \mu$

8: Introduction to Statistical Inference 8.2 Estimation of Mean μ (σ Known)

Thus, a $(1-\alpha) \times 100\%$ confidence interval for μ is

$$\overline{x} \pm z(\alpha / 2) \frac{\sigma}{\sqrt{n}}$$

which if α =0.05, a 95% confidence interval for μ is $\overline{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}$.

Confidence Interval for Mean:

$$\overline{x} - z(\alpha/2) \frac{\sigma}{\sqrt{n}}$$
 to $\overline{x} + z(\alpha/2) \frac{\sigma}{\sqrt{n}}$ (8.1)

8: Introduction to Statistical Inference 8.2 Estimation of Mean μ (σ Known)

Philosophically, μ is fixed and the interval varies.

If we take a sample of data, $x_1, ..., x_n$ and determine a confidence interval from it, we get. $\overline{x} \pm z(\alpha/2) \frac{\sigma}{\sqrt{n}}$

If we had a different sample of data,
$$y_1, ..., y_n$$
 we would have determined
a different confidence interval.

$$\overline{y} \pm z(\alpha / 2) \frac{\sigma}{\sqrt{n}}$$

Figure from Johnson & Kuby, 2012.

8: Introduction to Statistical Inference 8.2 Estimation of Mean μ (σ Known)

We never truly know if our CI from our sample of data will

contain the true population mean μ .

But we do know that there is a $(1-\alpha) \times 100\%$ chance

that a confidence interval from a sample of data will contain μ .

```
Example 1: Friend's Party. H_0: "The party will be a dud" vs.
```

```
H_a: "The Party will be a great time"
```

```
Example 2: Math 1700 Students Height H_0: The mean height of Math 1700 students is 69", \mu = 69". vs.
```

 H_a : The mean height of Math 1700 students is not 69", $\mu \neq 69$ ".

Example 2: Math 1700 Height $H_0: \mu = 69"$ Four outcomes from a hypothesis test. $\mu = 69$ *μ* ≠ 69 VS. Fail to Type II Correct *H_a*: $\mu \neq 69$ " Error reject Decision H_0 . Reject Type I Correct If we reject H_0 and it is true, Decision Error H_0 . we made in error in judgment. If we do not reject H_0 and it is false, we have made an error in judgment.

Type I Error: ... true null hypothesis H_0 is rejected.

Level of Significance (α **):** The probability of committing a type I error. (Sometimes α is called the false positive rate.)

Type II Error: ... favor ... null hypothesis that is actually false.

Type II Probability (β): The probability of committing a type II error.

	H ₀ True	H_0 False	
Do Not Reject <i>H</i> ₀	Type A Correct Decision (1-α)	Type II Error ↑ (β)	
Reject H ₀	 [*] Type I Error (α) 	Type B Correct Decision $(1-\beta)$	

We need to determine a measure that will quantify what we should believe.

Test Statistic: A random variable whose value is calculated from the sample data and is used in making the decision "reject H_0 : or "fail to reject H_0 ."

Example: Friend's Party Fraction of parties that were good.

Example: Math 1700 Heights Sample mean height.

HYPOTHESIS TESTING PAIRS

Null Hypothesis

- 1. Greater than or equal to (\geq) 2. Less than or equal to (\leq)
- 3. Equal to (=)

Alternative Hypothesis

Less than (<) Greater than (>) Not equal to (\neq)

TABLE 8.6 Common Phrases and Their Negations

$H_o: (\geq)$ vs.	H _a : (<)	<i>H</i> ₀: (≤) vs.	H _a : (>)	H_o : (=) vs.	<i>H</i> _a : (≠)
At least	Less than	At most	More than	ls	ls not
No less than	Less than	No more than	More than	Not different from	Different from
Not less than	Less than	Not greater than	Greater than	Same as	Not same as

Figure from Johnson & Kuby, 2012.

8.4 Hypothesis Test of Mean (σ Known): Probability Approach

8.4 Hypothesis Test of Mean (σ Known): Probability Approach

Step 1 The Set-Up: Null (H_0) and alternative (H_a) hypotheses $H_0: \mu = 69$ " vs. $H_a: \mu \neq 69$ " Step 2 The Hypothesis Test Criteria: Test statistic. $z^* = \frac{x - \mu_0}{\sqrt{2}}$ o known, *n* is "large" so by CLT \overline{x} is normal σ / \sqrt{n} z^* is normal Step 3 The Sample Evidence: Calculate test statistic. $z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{67.2 - 69}{4 / \sqrt{15}} = -1.74$ *n*=15, \bar{x} =67.2, σ = 4 normal **Step 4 The Probability Distribution:** 0.0409 0.0409 $P(z > |z^*|) = p - \text{value} \rightarrow 0.0819$ -1.74 1.74 **Step 5 The Results:** $-|z\star|$ $|z\star|$ 0 Z $p - \text{value} \le \alpha$, reject H_0 , $p - \text{value} > \alpha$ fail to reject H_0 $\alpha = 0.05$

- 8: Introduction to Statistical Inference
- 8.4 Hypothesis Test of Mean (σ Known): Probability Approach

HYPOTHESIS TESTING PAIRS

 $H_0: \mu \ge 69$ " vs. $H_a: \mu < 69$ "

8.4 Hypothesis Test of Mean (σ Known): Probability Approach

Step 1 The Set-Up: Null (H_0) and alternative (H_a) hypotheses $H_0: \mu \ge 69$ " vs. $H_a: \mu < 69$ " Step 2 The Hypothesis Test Criteria: Test statistic. $z^* = \frac{\overline{x} - \mu_0}{\sqrt{x}}$ o known, *n* is "large" so by CLT \overline{x} is normal σ / \sqrt{n} z^* is normal Step 3 The Sample Evidence: Calculate test statistic. $z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{67.2 - 69}{4 / \sqrt{15}} = -1.74$ *n*=15, \bar{x} =67.2, σ = 4 normal **Step 4 The Probability Distribution:** 0.0409 $P(z < z^*) = p - \text{value} \rightarrow 0.0409$ -1.74**Step 5 The Results:** $-|z\star|$ 0 $p - \text{value} \le \alpha$, reject H_0 , $p - \text{value} > \alpha$ fail to reject H_0 $\alpha = 0.05$

- 8: Introduction to Statistical Inference
- 8.4 Hypothesis Test of Mean (σ Known): Probability Approach

8.4 Hypothesis Test of Mean (σ Known): Probability Approach

Step 1 The Set-Up: Null (H_0) and alternative (H_a) hypotheses $H_0: \mu \le 69$ " vs. $H_a: \mu > 69$ " Step 2 The Hypothesis Test Criteria: Test statistic. $z^* = \frac{x - \mu_0}{\sqrt{\pi}}$ o known, *n* is "large" so by CLT \overline{x} is normal σ/\sqrt{n} z^* is normal Step 3 The Sample Evidence: Calculate test statistic. $z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{67.2 - 69}{4 / \sqrt{15}} = -1.74$ *n*=15, \bar{x} =67.2, σ = 4 normal 0.9591 **Step 4 The Probability Distribution:** $P(z > z^*) = p - \text{value} \rightarrow 0.9691$ -1.74**Step 5 The Results:** $-|z\star|$ 0 $p - \text{value} \le \alpha$, reject H_0 , $p - \text{value} > \alpha$ fail to reject H_0 $\alpha = 0.05$

8.4 Hypothesis Test of Mean (σ Known): Probability Approach

Step 1 The Set-Up: Null (H_0) and alternative (H_a) hypotheses $H_0: \mu = 69$ " vs. $H_a: \mu \neq 69$ " Step 2 The Hypothesis Test Criteria: Test statistic. $z^* = \frac{x - \mu_0}{\sqrt{2}}$ o known, *n* is "large" so by CLT \overline{x} is normal σ / \sqrt{n} z^* is normal Step 3 The Sample Evidence: Calculate test statistic. $z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{67.2 - 69}{4 / \sqrt{15}} = -1.74$ *n*=15, \bar{x} =67.2, σ =4 normal **Step 4 The Probability Distribution:** 0.0409 0.0409 $P(z > |z^*|) = p - \text{value} \rightarrow 0.0819$ -1.74 1.74 **Step 5 The Results:** $-|z\star|$ $|z\star|$ 0 Z $p - \text{value} \le \alpha$, reject H_0 , $p - \text{value} > \alpha$ fail to reject H_0 $\alpha = 0.05$

8.5 Hypothesis Test of Mean (σ Known): Classical Approach

Step 1 The Set-Up: Null (H_0) and alternative (H_a) hypotheses H_0 : $\mu = 69$ " vs. H_a : $\mu \neq 69$ "

Step 2 The Hypothesis Test Criteria: Test statistic.

 $z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$ σ known, *n* is "large" so by CLT \overline{x} is normal z^* is normal

n=15, \bar{x} =67.2, σ = 4

 $-1.96 z^{*} = -1.740$

normal

0.025

Step 3 The Sample Evidence: Calculate test statistic.

$$z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{67.2 - 69}{4 / \sqrt{15}} = -1.74$$

Step 4 The Probability Distribution: $\alpha = 0.05, z(\alpha/2)=1.96$

Step 5 The Results:

 $|z^*| > z(\alpha/2)$, reject H_0 , $|z^*| \le z(\alpha/2)$ fail to reject H_0

Rowe, D.B.

0.025

Z

1.96

8: Introduction to Statistical Inference 8.5 Hypothesis Test of Mean (σ Known): Classical Approach

There are three possible hypothesis pairs for the mean.

8: Introduction to Statistical Inference 8.5 Hypothesis Test of Mean (σ Known): Classical Approach

There are three possible hypothesis pairs for the mean.

 $H_{0}: \mu \leq \mu_{0} \text{ vs. } H_{a}: \mu > \mu_{0}$ Reject H_{0} if greater then $z^{*} = \frac{\overline{x} - \mu_{0}}{\sigma / \sqrt{n}} \qquad z(\alpha)$

data indicates $\mu > \mu_0$ because \overline{x} is "a lot" larger than μ_0

8: Introduction to Statistical Inference 8.5 Hypothesis Test of Mean (σ Known): Classical Approach

There are three possible hypothesis pairs for the mean.

Exam 2 Next Class