**MATH 1700** 

## Class 14

#### Daniel B. Rowe, Ph.D.

#### Department of Mathematical and Statistical Sciences



Be The Difference.

Copyright by D.B. Rowe

# Agenda:

# **Recap Chapter 8.5**

# Lecture Chapter 9.1



# **Recap Chapter 8.5**

8.4 Hypothesis Test of Mean (σ Known): Probability Approach

**Step 1 The Set-Up:** Null  $(H_0)$  and alternative  $(H_a)$  hypotheses  $H_0: \mu = 69$ " vs.  $H_a: \mu \neq 69$ " Step 2 The Hypothesis Test Criteria: Test statistic.  $z^* = \frac{x - \mu_0}{\sqrt{2}}$  o known, *n* is "large" so by CLT  $\overline{x}$  is normal  $\sigma/\sqrt{n}$  $z^*$  is normal Step 3 The Sample Evidence: Calculate test statistic.  $z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{67.2 - 69}{4 / \sqrt{15}} = -1.74$ *n*=15,  $\bar{x}$ =67.2,  $\sigma$  = 4 normal **Step 4 The Probability Distribution:** 0.0409 0.0409  $P(z > |z^*|) = p - \text{value} \rightarrow 0.0819$ -1.74 1.74 **Step 5 The Results:**  $-|z\star|$  $|z\star|$ 0 Z $p - \text{value} \le \alpha$ , reject  $H_0$ ,  $p - \text{value} > \alpha$  fail to reject  $H_0$  $\alpha = 0.05$ 

8.5 Hypothesis Test of Mean (σ Known): Classical Approach

**Step 1 The Set-Up:** Null  $(H_0)$  and alternative  $(H_a)$  hypotheses  $H_0$ :  $\mu = 69$ " vs.  $H_a$ :  $\mu \neq 69$ "

Step 2 The Hypothesis Test Criteria: Test statistic.

 $z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$   $\sigma$  known, *n* is "large" so by CLT  $\overline{x}$  is normal  $z^*$  is normal

Step 3 The Sample Evidence: Calculate test statistic.

$$z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{67.2 - 69}{4 / \sqrt{15}} = -1.74$$

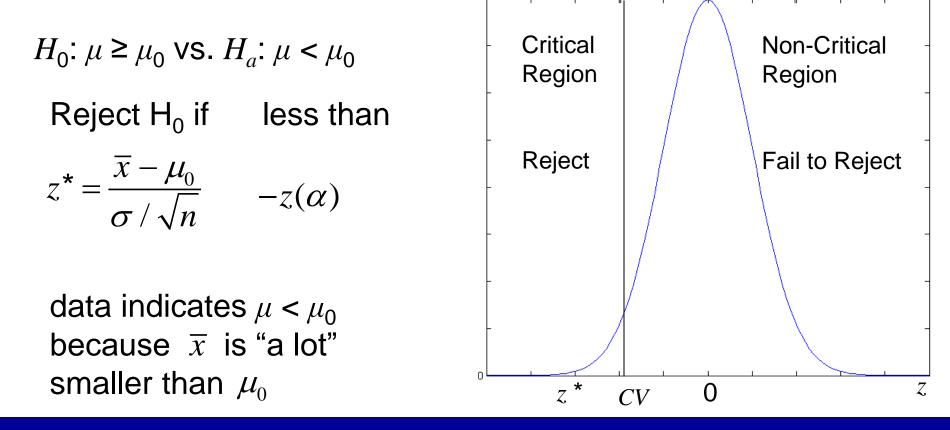
**Step 4 The Probability Distribution:**  $\alpha = 0.05, z(\alpha/2)=1.96$ 

**Step 5 The Results:** 

 $|z*| > z(\alpha/2)$ , reject  $H_0$ ,  $|z*| \le z(\alpha/2)$  fail to reject  $H_0$ 

 $n=15, \overline{x} = 67.2, \sigma = 4$ normal 0.025  $\star$  0.025  $-1.96 z^*=-1.740$  1.96 z

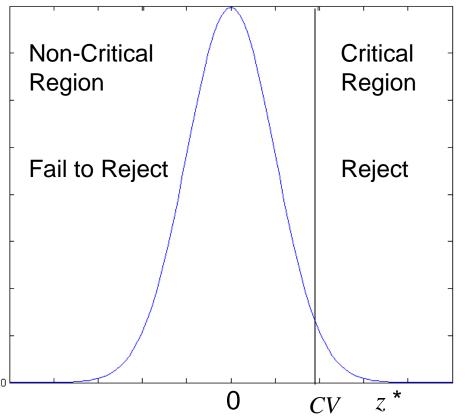
There are three possible hypothesis pairs for the mean.



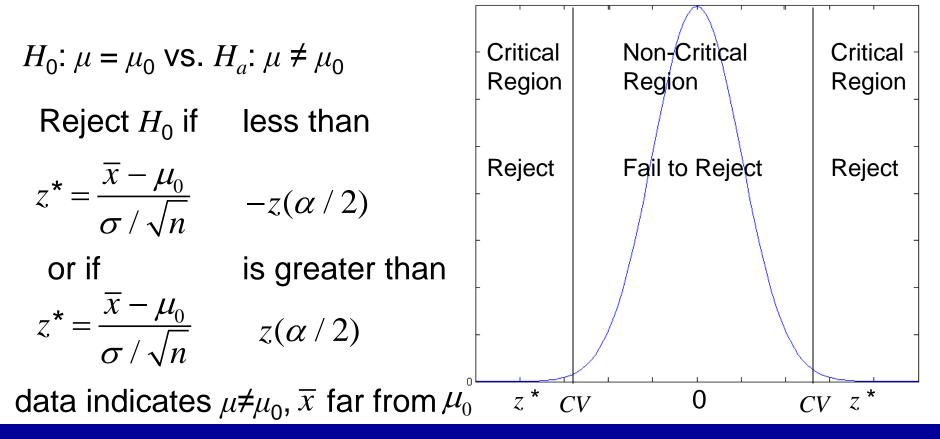
There are three possible hypothesis pairs for the mean.

 $H_0: \mu \le \mu_0 \text{ vs. } H_a: \mu > \mu_0$ Reject  $H_0$  if greater then  $z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \qquad z(\alpha)$ 

data indicates  $\mu > \mu_0$ because  $\overline{x}$  is "a lot" larger than  $\mu_0$ 



There are three possible hypothesis pairs for the mean.

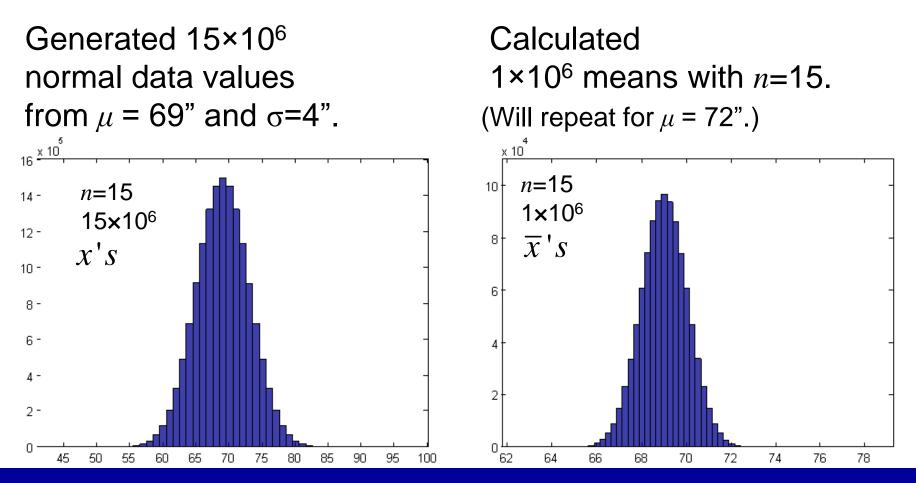


Let's examine the hypothesis test

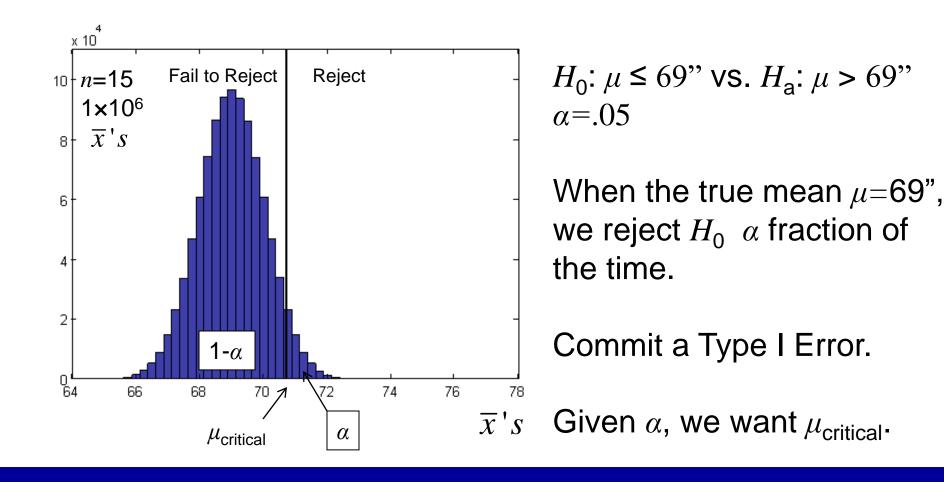
 $H_0: \mu \le 69"$  vs.  $H_a: \mu > 69"$ 

with  $\alpha$ =.05 for the heights of Math 1700 students.

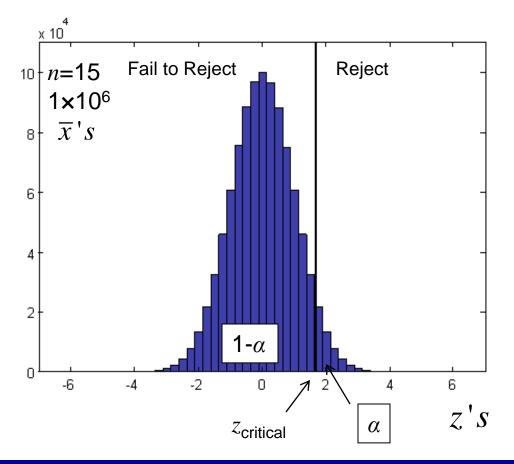
Generate random data values.



**8.5 Hypothesis Test of Mean (**σ Known): Classical Approach



8.5 Hypothesis Test of Mean (σ Known): Classical Approach

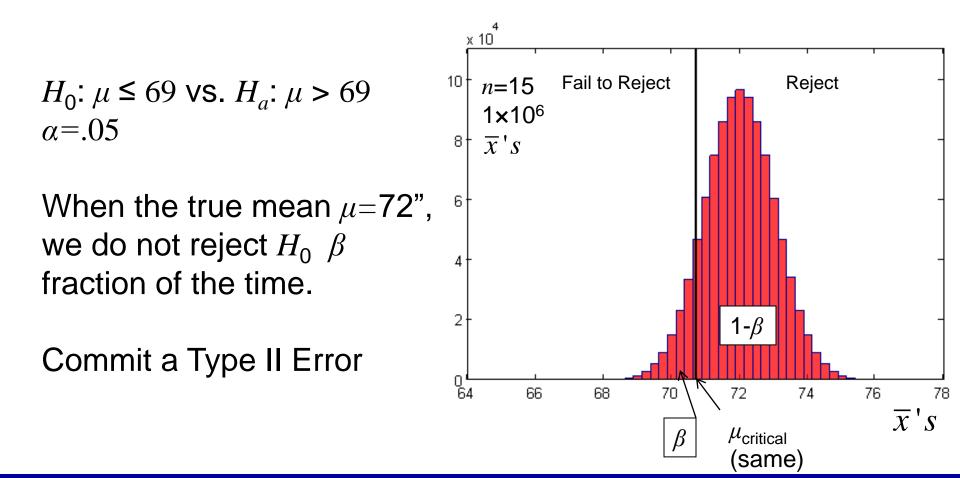


Instead of  $\mu_{\text{critical}}$  we find critical *z*,  $z_{\text{critical}}=z(\alpha)$ .

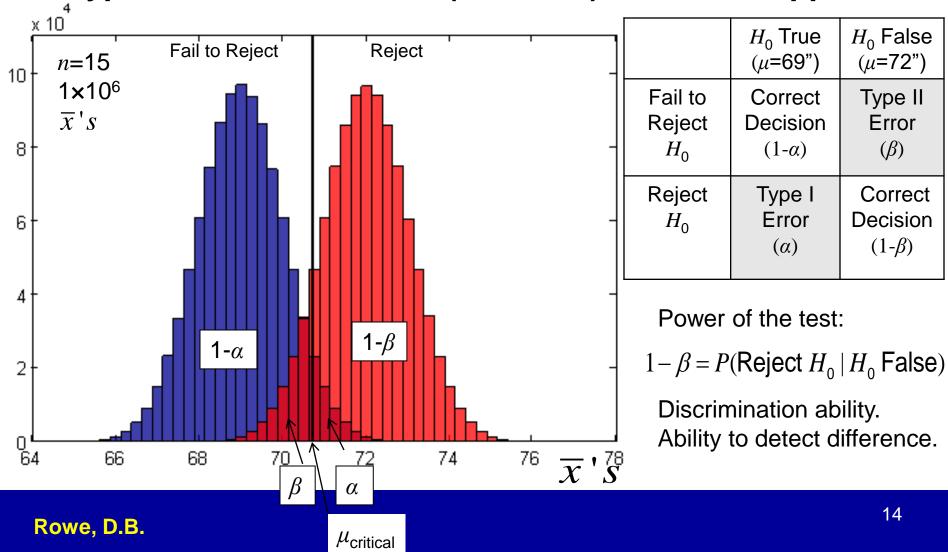
Do this by assuming that  $H_0$ :  $\mu$ =69" is true, then calculate

$$z = \frac{\overline{x} - 69}{4 / \sqrt{15}}$$

8.5 Hypothesis Test of Mean (σ Known): Classical Approach

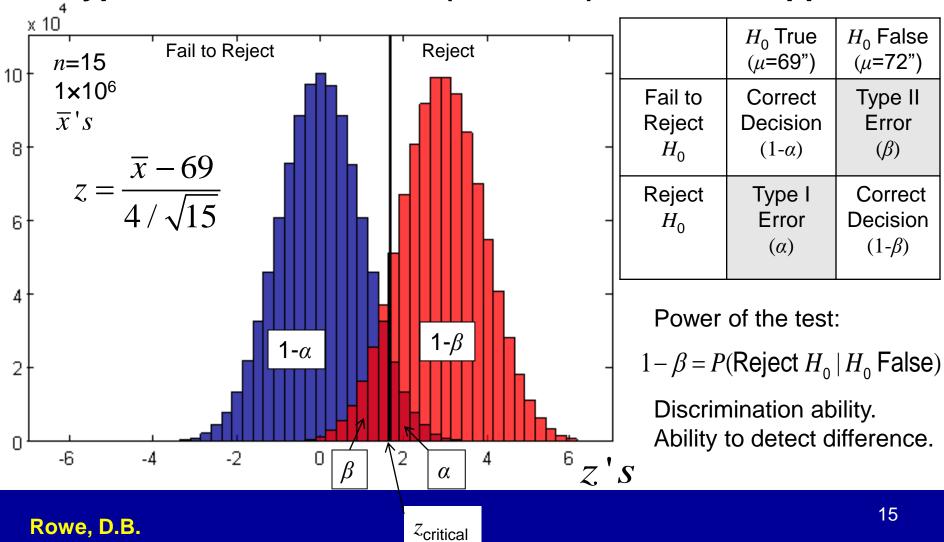


8: Introduction to Statistical Inference  $H_0: \mu \le \mu_0 \text{ vs. } H_a: \mu > \mu_0$ 8.5 Hypothesis Test of Mean ( $\sigma$  Known): Classical Approach



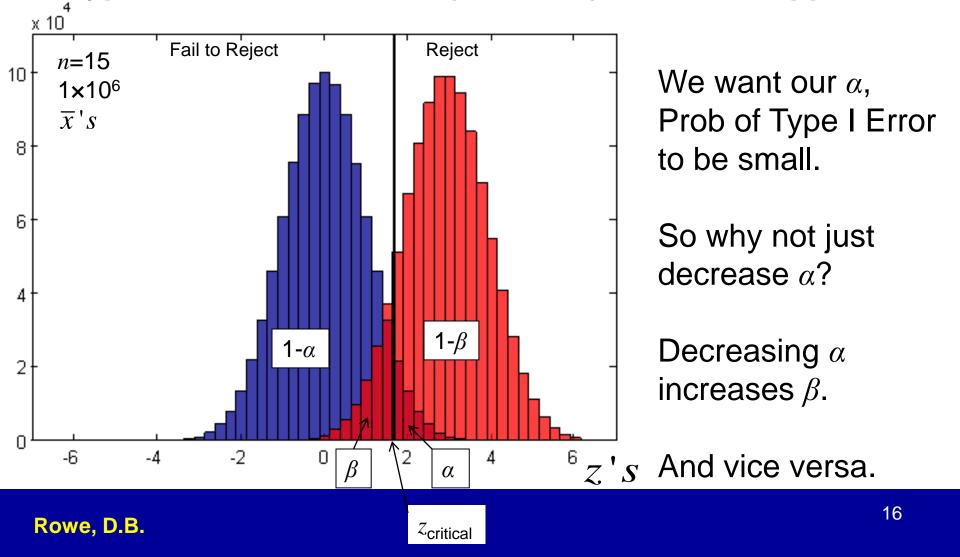
#### 8: Introduction to Statistical Inference $H_0: \mu \le \mu_0 \text{ vs. } H_a: \mu > \mu_0$ 8.5 Hypothesis Test of Mean ( $\sigma$ Known): Classical Approach

**MATH 1700** 

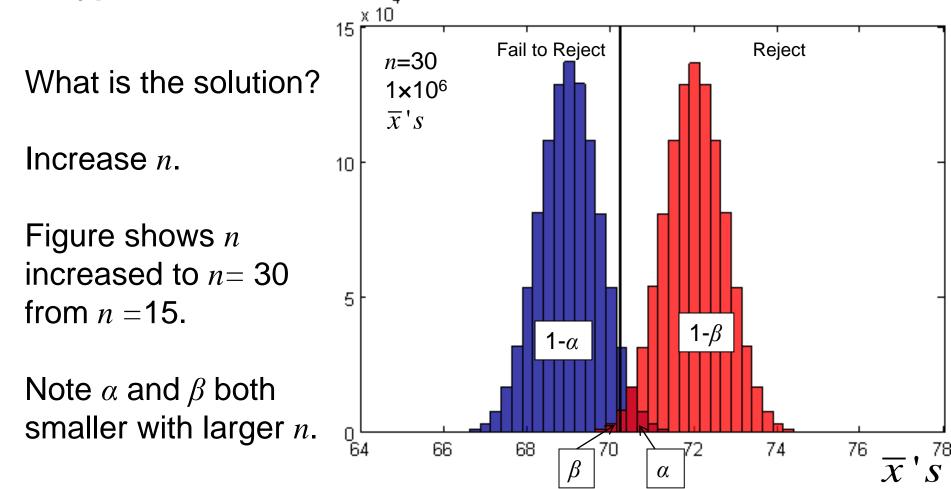


#### 8: Introduction to Statistical Inference $H_0: \mu \le \mu_0 \text{ vs. } H_a: \mu > \mu_0$ 8.5 Hypothesis Test of Mean ( $\sigma$ Known): Classical Approach

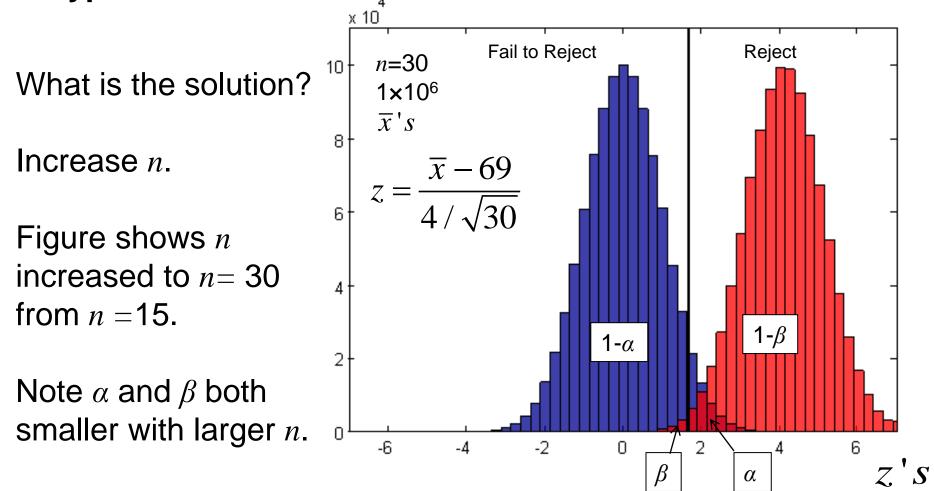
**MATH 1700** 



8.5 Hypothesis Test of Mean (σ Known): Classical Approach



#### 8: Introduction to Statistical Inference $H_0: \mu \le \mu_0 \text{ vs. } H_1: \mu > \mu_0$ 8.5 Hypothesis Test of Mean ( $\sigma$ Known): Classical Approach



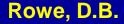
Rowe, D.B.

**MATH 1700** 

#### **Chapter 8: Introduction to Statistical Inference**

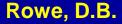
**Questions?** 

Homework: WebAssign





# Lecture Chapter 9.1



## Chapter 9: Inferences Involving One Population

#### Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences



Be The Difference.

In Chapter 8, we performed hypothesis tests on the mean by

1) assuming that  $\overline{x}$  was normally distributed (*n* "large"),

2) assuming the hypothesized mean  $\mu_0$  were true,

3) assuming that  $\sigma$  was known, so that we could form

$$z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$
 which with 1) – 3) has standard normal dist.

However, in real life, we never know  $\boldsymbol{\sigma}$  for

$$z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}}$$

so we would like to estimate  $\sigma$  by *s*, then use

$$t^* = \frac{\overline{x} - \mu_0}{s / \sqrt{n}}$$

Rowe, D.B.



Gosset

But  $t^*$  does not have a standard normal distribution.

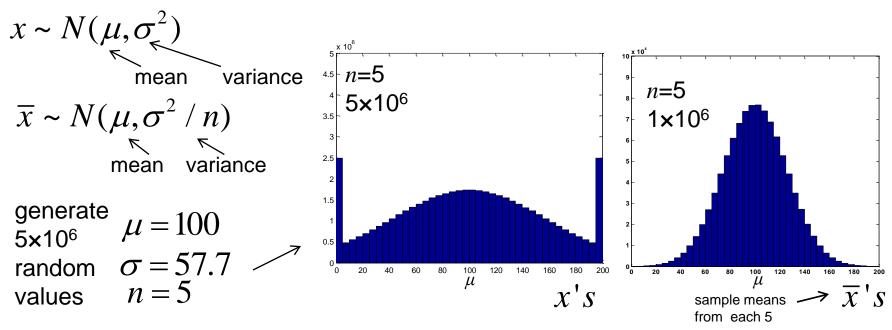
It has what is called a Student *t*-distribution.

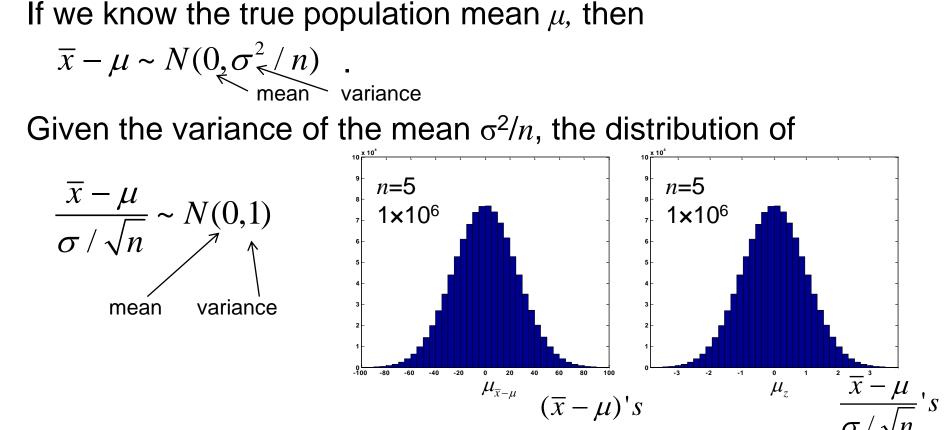
**Guinness Brewery** 

MATH 1700

What is the Student *t*-distribution and how do we get it? Background Information

If the data comes from a normally distributed population, then





**MATH 1700** 

 $\mu = 100$ 

 $\sigma = 57.7$ 

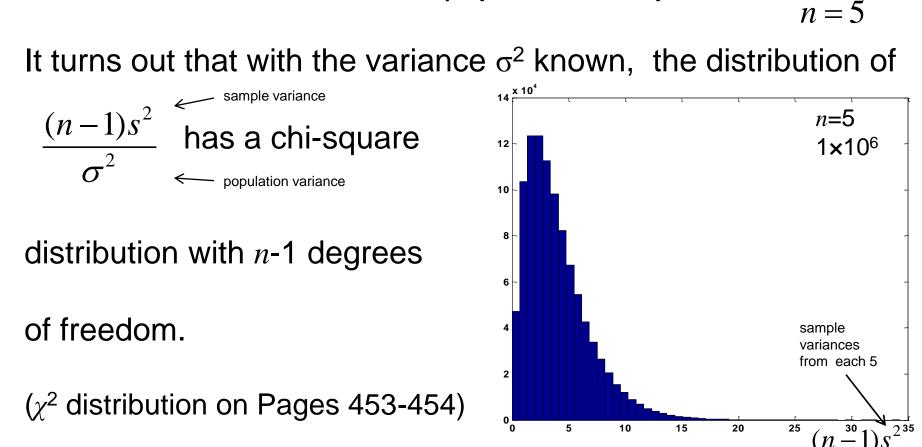
n = 5

**MATH 1700** 

 $\mu = 100$ 

 $\sigma = 57.7$ 

## 9: Inferences Involving One Population 9.1 Inference about the Mean $\mu$ ( $\sigma$ Unknown)



**Marquette University** 

### **9: Inferences Involving One Population** 9.1 Inference about the Mean $\mu$ ( $\sigma$ Unknown)

-1)

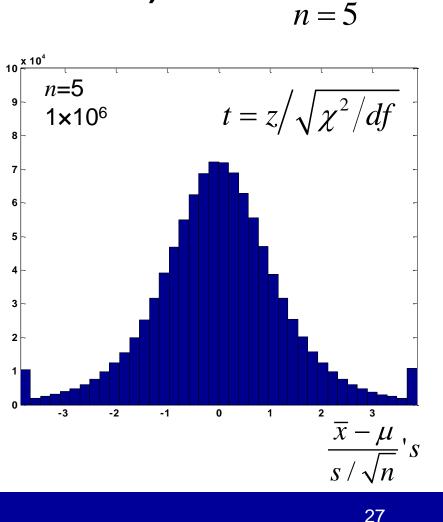
8

The ratio 
$$\swarrow^{N(0,1)}$$
  
 $t = \left(\frac{\overline{x} - \mu}{\sigma / \sqrt{n}}\right) / \sqrt{\frac{(n-1)s^2}{\sigma_{\kappa}^2}} / (n + 1)s^2 /$ 

is 
$$t = \frac{\overline{x} - \mu}{s / \sqrt{n}}$$
,

and has a Student

*t*-distribution with *n*-1 df.



 $\mu = 100$ 

 $\sigma = 57.7$ 

**MATH 1700** 

 $\mu = 100$ 

n = 5

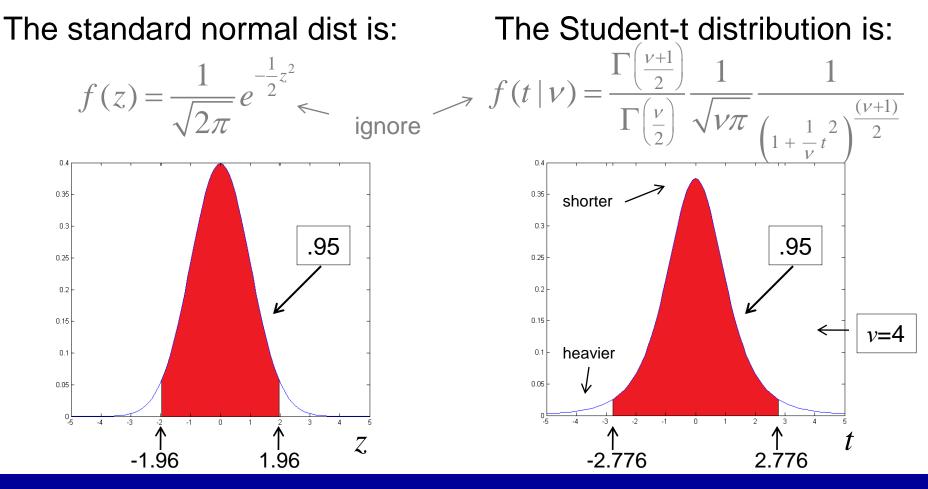
#### 9: Inferences Involving One Population $\sigma = 57.7$ 9.1 Inference about the Mean $\mu$ ( $\sigma$ Unknown)

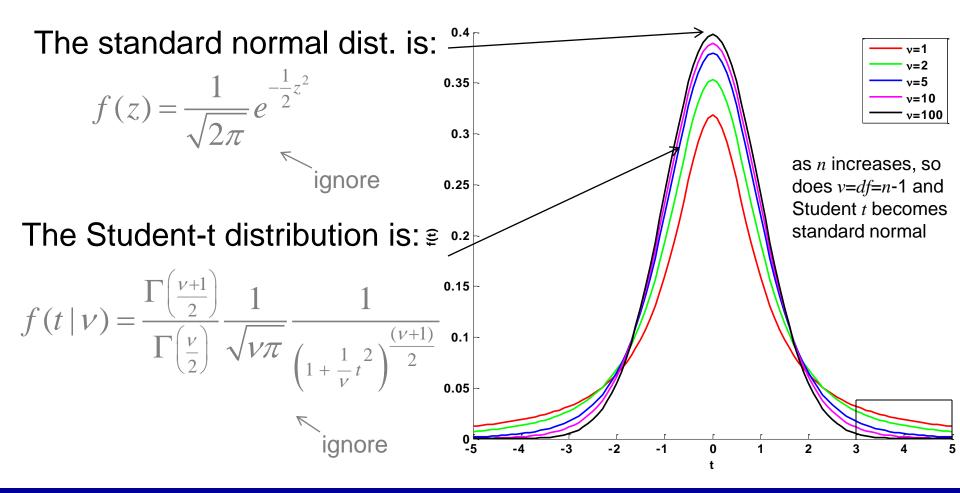
Student *t*-distribution has heavier tails than standard normal. 10 <u>× 10</u> 10 <u>× 10</u> *n*=5 9 9 n=51×10<sup>6</sup> 8 shorter  $1 \times 10^{6}$ 7 7 6 5 tails tails heavier 3 3 2 2 1 -2 0 2  $\overline{x}$  --1 0 1 2 -3 -2 -1 1 -3 Z ='*S* 

Rowe, D.B.

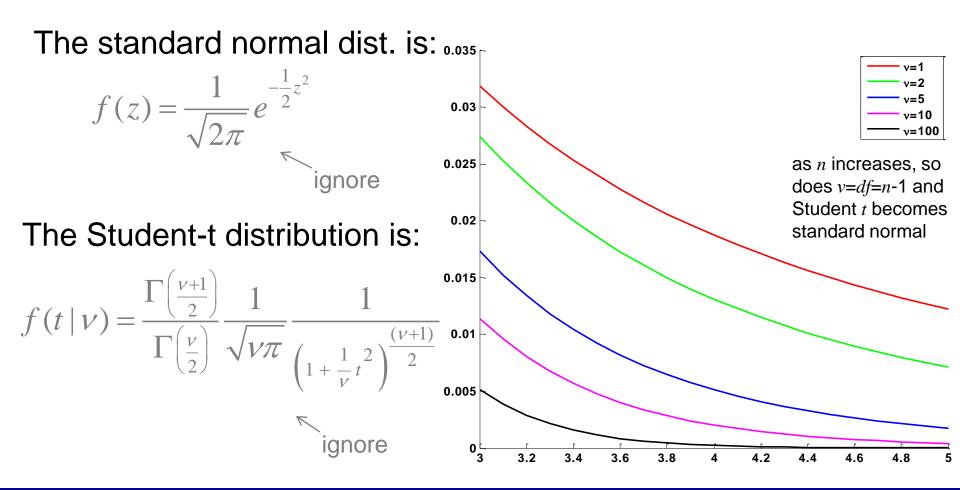
28

v = df = n - 1





**MATH 1700** 



Rowe, D.B.

**MATH 1700** 

#### 9: Inferences Involving One Population 9.1 Inference about the Mean $\mu$ ( $\sigma$ Unknown) Using the *t*-Distribution Table

Finding critical value from a Student *t*-distribution, *df*=*n*-1

 $t(df,\alpha)$ , t value with  $\alpha$  area larger than it

with *df* degrees of freedom

Table 6 Appendix B Page 719.

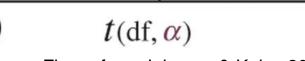


Figure from Johnson & Kuby, 2012.

 $\alpha$ 

#### **Marquette University**

#### MATH 1700

 $t(df, \alpha)$ 

0

 $\alpha$ 



## 9.1 Inference about the Mean $\mu$ ( $\sigma$ Unknown)

# **Example:** Find the value of t(10,0.05), df=10, $\alpha=0.05$ .

Area in One Tail

|                             | 0.25                                      | 0.10                                        | 0.05                                    | 0.025                                | 0.01                                 | 0.005                                | Table 6                               |
|-----------------------------|-------------------------------------------|---------------------------------------------|-----------------------------------------|--------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------|
| Area in<br>df               | Two Tails<br>0.50                         | 0.20                                        | 0.10                                    | 0.05                                 | 0.02                                 | 0.01                                 | Appendix B                            |
| 3<br>4<br>5                 | 0.765<br>0.741<br>0.727                   | 1.64<br>1.53<br>1.48                        | 2.35<br>2.13<br>2.02                    | 3.18<br>2.78<br>2.57                 | 4.54<br>3.75<br>3.36                 | 5.84<br>4.60<br>4.03                 | Page 719.                             |
| 6<br>7<br>8<br>9<br>10      | 0.718<br>0.711<br>0.706<br>0.703<br>0.700 | 1.44<br>1.41<br>1.40<br><u>1.38</u><br>1.37 | 1.94<br>1.89<br>1.86<br>1.83<br>(1.81)← | 2.45<br>2.36<br>2.31<br>2.26<br>2.23 | 3.14<br>3.00<br>2.90<br>2.82<br>2.76 | 3.71<br>3.50<br>3.36<br>3.25<br>3.17 | Go to 0.05<br>One Tail<br>column and  |
| i                           |                                           |                                             |                                         |                                      |                                      |                                      | down to 10                            |
| 35<br>40<br>50<br>70<br>100 | 0.682<br>0.681<br>0.679<br>0.678<br>0.677 | 1.31<br>1.30<br>1.30<br>1.29<br>1.29        | 1.69<br>1.68<br>1.68<br>1.67<br>1.66    | 2.03<br>2.02<br>2.01<br>1.99<br>1.98 | 2.44<br>2.42<br>2.40<br>2.38<br>2.36 | 2.72<br>2.70<br>2.68<br>2.65<br>2.63 | <i>df</i> <b>row.</b><br>Figures from |
| df > 100                    | 0.675                                     | 1.28                                        | 1.65                                    | 1.96                                 | 2.33                                 | 2.58                                 | Johnson & Kuby, 2012.                 |

When making a confidence interval for  $\mu$  when  $\sigma$  unknown,

we assume that the population is normal, not just mean,

but when *n* is "large," can often use for nonnormal distributions.

The assumption for inferences about the mean  $\mu$  when  $\sigma$  is unknown: The sampled population is normally distributed.

Discussed a confidence interval for the  $\mu$  when  $\sigma$  was known,

 $\overline{x} - z(\alpha/2) \frac{\sigma}{\sqrt{n}}$  to  $\overline{x} + z(\alpha/2) \frac{\sigma}{\sqrt{n}}$ now, with  $\sigma$  unknown, the CI for the mean is

**Confidence Interval for Mean:** 

**Confidence Interval for Mean:** 

$$\overline{x} - t(df, \alpha/2) \frac{s}{\sqrt{n}}$$
 to  $\overline{x} + t(df, \alpha/2) \frac{s}{\sqrt{n}}$  (9.1)

(8.1)

**Example:** A random sample of *n*=15 math1700 student heights yielded  $\overline{x} = 67.2$ . Assume  $\sigma$ =4.0. Construct a 95% CI for  $\mu$ .

Fill In

$$\overline{x} \pm z(\alpha/2) \frac{\sigma}{\sqrt{n}}$$

**Example:** A random sample of *n*=15 math1700 student heights yielded  $\overline{x} = 67.2$  and *s*=3.5. Construct a 95% CI for  $\mu$  $\overline{x} - t(df, \frac{\alpha}{2}) \frac{s}{\sqrt{n}}$  Fill In

**Example:** A random sample of n=15 math1700 student heights yielded  $\overline{x} = 67.2$ . Assume  $\sigma=4.0$ . Construct a 95% CI for  $\mu$ .

$$\overline{x} \pm z(\alpha/2) \frac{\sigma}{\sqrt{n}} \longrightarrow 67.2 - 1.96 \frac{4.0}{\sqrt{15}}$$
 to  $67.2 + 1.96 \frac{4.0}{\sqrt{15}}$   
65.2 to 69.2

**Example:** A random sample of n=15 math1700 student heights yielded  $\overline{x} = 67.2$ . Assume  $\sigma=4.0$ . Construct a 95% CI for  $\mu$ .

$$\overline{x} \pm z(\alpha/2) \frac{\sigma}{\sqrt{n}} \longrightarrow 67.2 - 1.96 \frac{4.0}{\sqrt{15}} \text{ to } 67.2 + 1.96 \frac{4.0}{\sqrt{15}}$$
  
*vs.* 65.2 to 69.2

**Example:** A random sample of *n*=15 math1700 student heights yielded  $\overline{x} = 67.2$  and *s*=3.5. Construct a 95% CI for  $\mu$ .  $\overline{x} - t(df, \frac{\alpha}{2}) \frac{s}{\sqrt{n}}$ 

**Example:** A random sample of n=15 math1700 student heights yielded  $\overline{x} = 67.2$ . Assume  $\sigma=4.0$ . Construct a 95% CI for  $\mu$ .

$$\overline{x} \pm z(\alpha/2) \frac{\sigma}{\sqrt{n}} \longrightarrow 67.2 - 1.96 \frac{4.0}{\sqrt{15}} \text{ to } 67.2 + 1.96 \frac{4.0}{\sqrt{15}}$$
  
*vs.* 65.2 to 69.2

**Example:** A random sample of n=15 math1700 student heights yielded  $\overline{x} = 67.2$  and s=3.5. Construct a 95% CI for  $\mu$ .  $\overline{x} - t(df, \frac{\alpha}{2}) \xrightarrow{s}{\sqrt{n}} \longrightarrow 67.2 - 2.14 \frac{3.5}{\sqrt{15}}$  to  $67.2 + 2.14 \frac{3.5}{\sqrt{15}}$ 65.3 to 69.1

### **Chapter 9: Inferences Involving One Population**

**Questions?** 

## Homework: Read Chapter 9.1 WebAssign Chapter 9 # 9, 21, 23, 45, 55