MATH 1700

Class 13

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

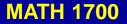
Be The Difference.

Copyright by D.B. Rowe

Agenda:

Recap Chapter 8.1 - 8.2

Lecture Chapter 8.3 - 8.5



Recap Chapter 8.1-8.2

8: Introduction to Statistical Inference 8.1 The Nature of Estimation

Point estimate for a parameter: A single number ..., to estimate a parameter ... usually the .. **sample statistic**.

i.e. \overline{x} is a point estimate for μ

Interval estimate: An interval bounded by two values and used to estimate the value of a population parameter.

i.e. $\overline{x} \pm (\text{some amount})$ is an interval estimate for μ .

point estimate ± some amount

8: Introduction to Statistical Inference 8.1 The Nature of Estimation

Significance Level: Probability parameter outside interval, α . $P(\mu \text{ not in } \overline{x} \pm \text{ some amount}) = \alpha$

Level of Confidence 1- α :

 $P(\overline{x} - \text{some amount} < \mu < \overline{x} + \text{some amount}) = 1 - \alpha$

Confidence Interval:

point estimator \pm some amount that depends on

confidence level

Marguette University

V

8: Introduction to Statistical Inference 8.2 Estimation of Mean μ (σ Known) By SDSM

What this implies is that
$$z = \frac{x - \mu_{\overline{x}}}{\sigma_{\overline{x}}}$$

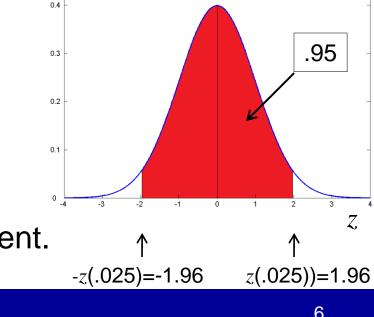
has an approximate standard normal distribution!

$$P(-1.96 < z < 1.96) = 0.95$$
 $\alpha = .05$

Or more generally,

$$P(-z(\alpha / 2) < z < z(\alpha / 2)) = 1 - \alpha$$

 $z(\alpha/2)$ called the confidence coefficient.



 $\mu_{\overline{x}} = \mu, \qquad \sigma_{\overline{x}} = -$

8: Introduction to Statistical Inference 8.2 Estimation of Mean μ (σ Known)

Thus, a $(1-\alpha) \times 100\%$ confidence interval for μ is

$$\overline{x} \pm z(\alpha / 2) \frac{\sigma}{\sqrt{n}}$$

which if α =0.05, a 95% confidence interval for μ is $\overline{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}$.

Confidence Interval for Mean:

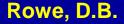
$$\overline{x} - z(\alpha/2) \frac{\sigma}{\sqrt{n}}$$
 to $\overline{x} + z(\alpha/2) \frac{\sigma}{\sqrt{n}}$ (8.

Chapter 8: Introduction to Statistical Inference

Questions?

Homework: Read Chapter 8.1-8.2 WebAssign Chapter 8 # 5, 15, 22, 24, 35, 47

Lecture Chapter 8.3 - 8.5



We make decisions every day in our lives.

Should I do *A* or should I do *B* (not *A*)?

Hypothesis: A statement that something is true.

Example: **Proposed Hypothesis:** "The party will be a great time."

Opposing Hypothesis:

"The party will be a dud."

How do you decide whether to go?

In order to determine which hypothesis we believe is true,

we perform something called a statistical hypothesis test.

Statistical hypothesis test: A process by which a decision is made between two opposing hypotheses. ... (read the rest)

We call the proposed hypothesis the null hypothesis and

the opposing hypothesis the alternative hypothesis.

Null Hypothesis, H_0 : The hypothesis that we will test. Generally a statement that a parameter has a specific value.

Alternative Hypothesis, H_a : A statement about the same parameter that is used in the null hypothesis. ... parameter has a value different ... from the value in the null hypothesis.

```
Example 1: Friend's Party. H_0: "The party will be a dud"
```

VS.

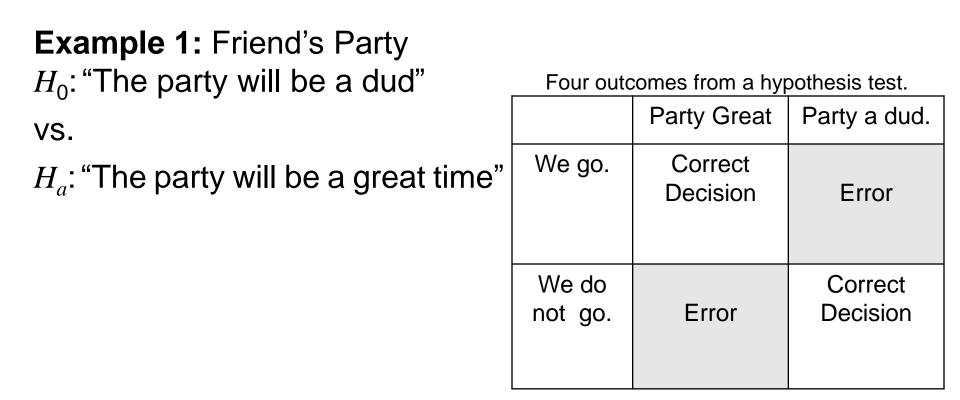
 H_a : "The party will be a great time"

```
Example 1: Friend's Party. H_0: "The party will be a dud" vs.
```

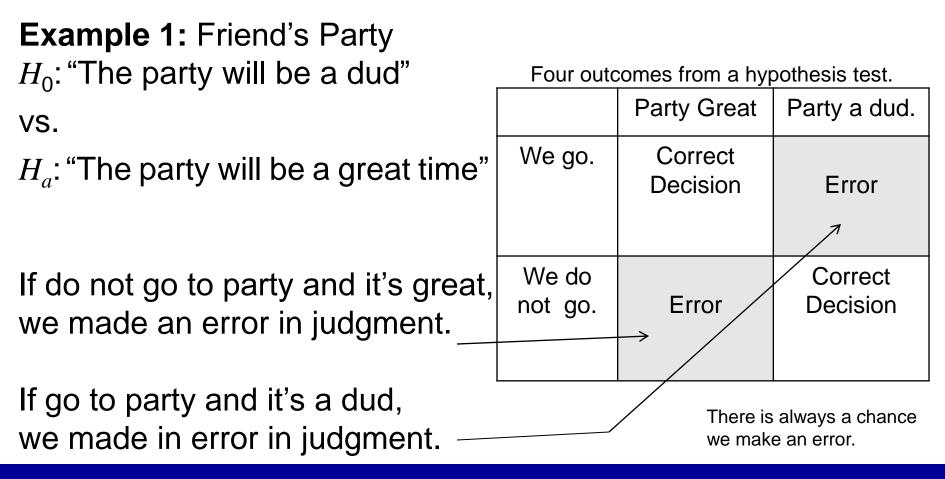
 H_a : "The party will be a great time"

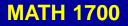
Example 2: Math 1700 Students Height H_0 : The mean height of Math 1700 students is 69", μ = 69". vs.

 H_a : The mean height of Math 1700 students is not 69", $\mu \neq 69$ ".



There is always a chance we make an error.





Example 2: Math 1700 Height *H*₀: *μ* = 69"

VS.

 H_a : $\mu \neq 69$ "

Four outcomes from a hypothesis test.

	$\mu = 69$	<i>μ</i> ≠ 69
Fail to reject <i>H</i> ₀ .	Correct Decision	Error
Reject <i>H</i> ₀ .	Error	Correct Decision

There is always a chance we make an error.

Example 2: Math 1700 Height $H_0: \mu = 69"$ Four outcomes from a hypothesis test. $\mu = 69$ *μ* ≠ 69 VS. Fail to Correct *H_a*: $\mu \neq 69$ " reject Decision Error H_0 . Reject Correct If we reject H_0 and it is true, Error Decision H_0 . we made in error in judgment. If we do not reject H_0 and it is false, There is always a chance we have made an error in judgment. we make an error.

Type I Error: When a true null hypothesis H_0 is rejected.

Type II Error: When we decide in favor of a null hypothesis - that is actually false.

Four outcomes from a hypothesis test.

	H ₀ True	H_0 False	
Fail to Reject <i>H</i> ₀	Type A Correct Decision	Type II Error	<
Reject H ₀	Type I Error	Type B Correct Decision	

Level of Significance (α **):** The probability of committing a type I error. (Sometimes α is called the false positive rate.)

	H ₀ True	H_0 False
Fail to Reject <i>H</i> ₀	Type A Correct Decision (1-α)	Type II Error (β)
Reject H ₀	↓ Type I ↓ Error (α)	Type B Correct Decision $(1-\beta)$

Level of Significance (α **):** The probability of committing a type I error. (Sometimes α is called the false positive rate.)

Type II Probability (β):

The probability of committing a type II error. (Sometimes β is called the false negative rate.)

	H ₀ True	H_0 False
Fail to Reject <i>H</i> ₀	Type A Correct Decision (1-α)	Type II Error (β) ↑
Reject H ₀	↓ Type I Error (α)	Type B Correct Decision $(1-\beta)$

We need to determine a measure that will quantify what we should believe.

Test Statistic: A random variable whose value is calculated from the sample data and is used in making the decision "reject H_0 : or "fail to reject H_0 ."

We need to determine a measure that will quantify what we should believe.

Test Statistic: A random variable whose value is calculated from the sample data and is used in making the decision "reject H_0 : or "fail to reject H_0 ."

Example 1: Friend's Party Fraction of friends parties that were good.

Example 2: Math 1700 Heights Sample mean height.

8: Introduction to Statistical Inference 8.4 Hypothesis Test of Mean (σ Known): A Probability-Value Approach

Note the first item presented in this section!

The assumption for hypothesis tests about mean μ using known σ : The sampling distribution of \overline{x} has a normal distribution.

Use normal distribution for \overline{x} to know when we have an unusual one compared to what we think it is.

8: Introduction to Statistical Inference 8.4 Hypothesis Test of Mean (σ Known): Probability Approach

THE PROBABILITY-VALUE HYPOTHESIS TEST: 5 STEPS Step 1 The Set-Up:

Step 2 The Hypothesis Test Criteria:

Step 3 The Sample Evidence:

Step 4 The Probability Distribution:

Step 5 The Results:

8.4 Hypothesis Test of Mean (σ Known): Probability Approach

THE PROBABILITY-VALUE HYPOTHESIS TEST: 5 STEPS Step 1 The Set-Up:

a. Describe the population parameter of interest.

The population parameter of interest is the mean μ , the height of Math 1700 students.

8.4 Hypothesis Test of Mean (σ Known): Probability Approach

THE PROBABILITY-VALUE HYPOTHESIS TEST: 5 STEPS Step 1 The Set-Up:

b. State the null hypothesis (H_0) and the alternative hypotheses (H_a) .

Null Hypothesis

1. Greater than or equal to (\geq) 2. Less than or equal to (\leq)

3. Equal to (=)

- Alternative Hypothesis
- Less than (<) Greater than (>) Not equal to (\neq)

$$H_0: \mu = 69$$
" vs. $H_a: \mu \neq 69$ '

Figure from Johnson & Kuby, 2012.

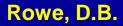
8.4 Hypothesis Test of Mean (σ Known): Probability Approach

THE PROBABILITY-VALUE HYPOTHESIS TEST: 5 STEPS Step 2 The Hypothesis Test Criteria:

a. Check the assumptions. Assume we know σ from past experience. Assume that *n* is "large" so that by the CLT \overline{x} is normally distributed.

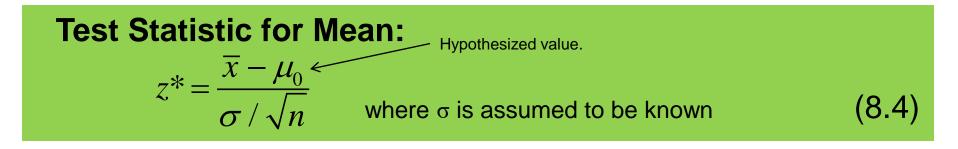
$$\mu_{\overline{x}} = \mu_0, \qquad \sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$$

[\] Hypothesized value.



8.4 Hypothesis Test of Mean (σ Known): Probability Approach

The standard normal distribution is to be used because \overline{x} is expected to have a normal distribution.



- 8: Introduction to Statistical Inference
- 8.4 Hypothesis Test of Mean (σ Known): Probability Approach

THE PROBABILITY-VALUE HYPOTHESIS TEST: 5 STEPS Step 3 The Sample Evidence:

 a. Collect a sample of information.
 Take a random sample from a population with mean μ that being questioned.

b. Calculate the value of the test statistic.

$$z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{67.2 - 69}{4 / \sqrt{15}} = -1.74$$

Assuming *n*=15 and 67.2 is sample mean. With known $\sigma = 4$.

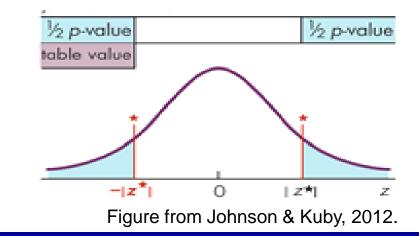
8.4 Hypothesis Test of Mean (σ Known): Probability Approach

THE PROBABILITY-VALUE HYPOTHESIS TEST: 5 STEPS Step 4 The Probability Distribution:

a. Calculate the *p*-value for the test statistic.

Probability value, or *p***-value:** The probability that the test statistic could be the value it is or a more extreme value.

$$H_0: \mu = 69$$
" vs. $H_a: \mu \neq 69$ "
 $P(z > |z^*|) = p - \text{value}$,
since two sided test.



8.4 Hypothesis Test of Mean (σ Known): Probability Approach

THE PROBABILITY-VALUE HYPOTHESIS TEST: 5 STEPS Step 5 The Results:

a. State the decision about H_0 . Is the *p*-value small enough to show that the sample evidence is highly unlikely if the null hypothesis were true?

Decision rule:

a. If the *p*-value is *less than or equal to* the level of significance *α*, then the decision must be **reject** *H*₀.
b. If the *p*-value is *greater than* the level of significance *α*, then the decision must be **fail to reject** *H*₀.

8.4 Hypothesis Test of Mean (σ Known): Probability Approach

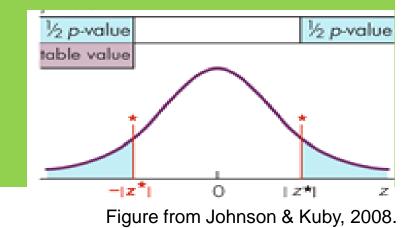
THE PROBABILITY-VALUE HYPOTHESIS TEST: 5 STEPS Step 5 The Results:

b. State the conclusion about H_a . With α = 0.05, *p*-value=0.0819.

Therefore there is not sufficient evidence to reject H_0 .

Fail to reject H_0 .

$$P(z < -1.74) = 0.0409$$



- 8: Introduction to Statistical Inference 8.5 Hypothesis Test of Mean μ (σ Known): A Classical Approach
 - THE CLASSICAL HYPOTHESIS TEST: 5 STEPS Step 1 The Set-Up:
 - **Step 2 The Hypothesis Test Criteria:**
 - **Step 3 The Sample Evidence:**
 - **Step 4 The Probability Distribution:**
 - **Step 5 The Results:**

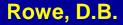
MATH 1700

8: Introduction to Statistical Inference 8.5 Hypothesis Test of Mean (σ Known): Classical Approach

THE CLASSICAL HYPOTHESIS TEST: 5 STEPS Step 1 The Set-Up:

a. Describe the population parameter of interest.

The population parameter of interest is the mean μ , the height of Math 1700 students.



8.5 Hypothesis Test of Mean (σ Known): Probability Approach

THE PROBABILITY-VALUE HYPOTHESIS TEST: 5 STEPS Step 1 The Set-Up:

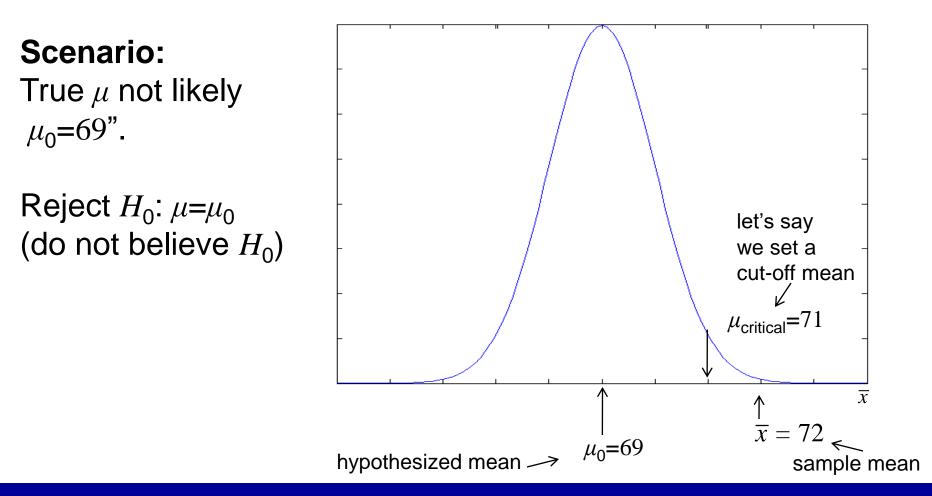
b. State the null hypothesis (H_0) and the alternative hypotheses (H_a) .

Null HypothesisAlternative Hypothesis1. Greater than or equal to (\geq)Less than (<)</td>2. Less than or equal to (\leq)Greater than (>)3. Equal to (=)Not equal to (\neq)

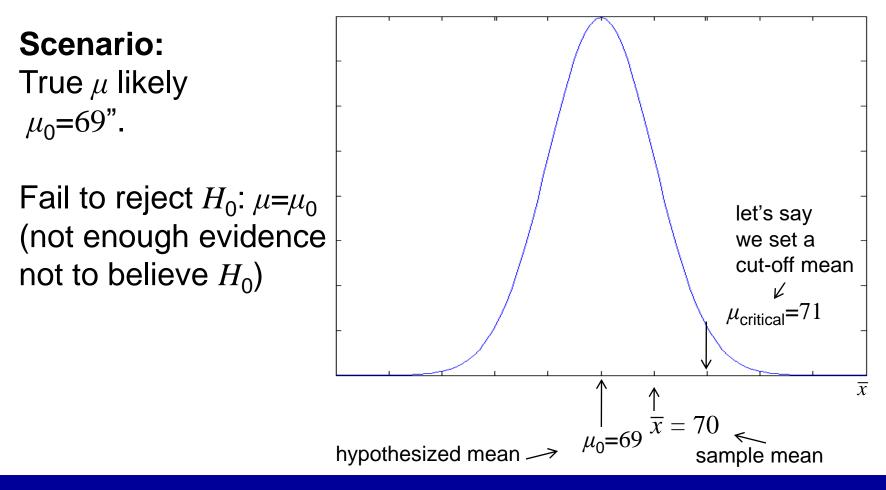
$$H_0: \mu = 69$$
" vs. $H_a: \mu \neq 69$ "

Figure from Johnson & Kuby, 2012.

8.5 Hypothesis Test of Mean (σ Known): Classical Approach



8.5 Hypothesis Test of Mean (σ Known): Classical Approach



- We need a "better" (objective) way to set a "cut-off " value
- or "cut-off" values for which we would either believe H_0 or
- for which we would not have enough evidence not believe H_0 .

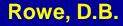
We need to use the normal distribution and probabilities.

8.5 Hypothesis Test of Mean (σ Known): Classical Approach

THE CLASSICAL HYPOTHESIS TEST: 5 STEPS Step 2 The Hypothesis Test Criteria:

a. Check the assumptions. Assume we know from past experience that $\sigma=4$. Assume that *n* is "large" so that by the CLT \overline{x} is normally distributed.

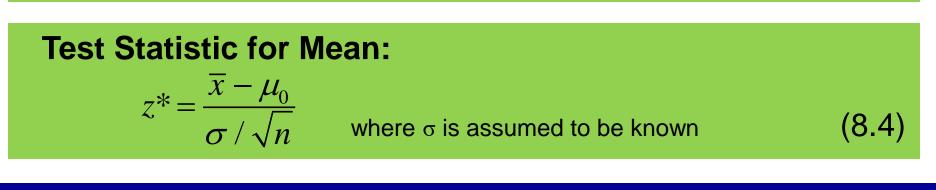
$$\mu_{\overline{x}} = \mu, \qquad \sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}} \qquad \text{by SDSM}$$



THE CLASSICAL HYPOTHESIS TEST: 5 STEPS Step 2 The Hypothesis Test Criteria:

b. Identify the probability distribution and the test statistic to be used.

The standard normal distribution is to be used because \overline{x} is expected to have a normal distribution.



THE CLASSICAL HYPOTHESIS TEST: 5 STEPS Step 2 The Hypothesis Test Criteria: c. Determine the level of significance, α.

After much consideration, we assign a tolerable probability of a Type I error to be α =0.05.

Type I Error: When a true null hypothesis H_0 is rejected.

8.5 Hypothesis Test of Mean (σ Known): Classical Approach

THE CLASSICAL HYPOTHESIS TEST: 5 STEPS Step 3 The Sample Evidence:

a. Collect a sample of information. Take a random sample from the population with mean μ that being questioned.

b. Calculate the value of the test statistic.

$$z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} = \frac{67.2 - 69}{4 / \sqrt{15}} = -1.74$$

Assuming *n*=15 and 67.2 is sample mean. With known $\sigma = 4$.

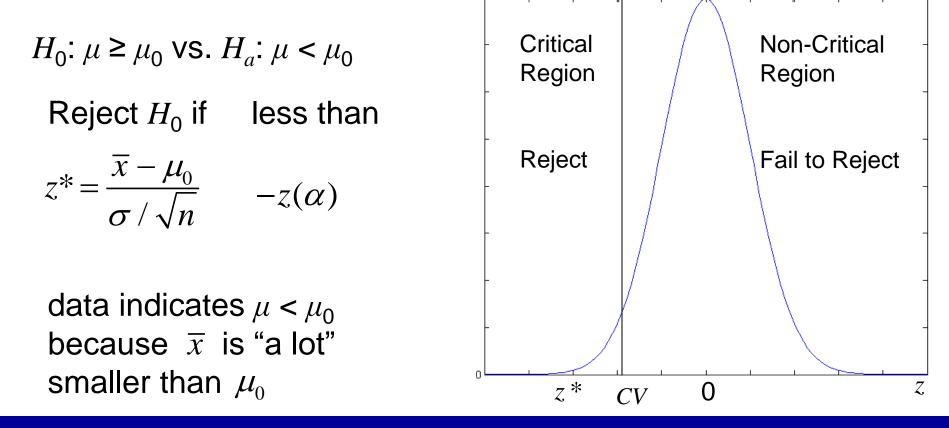
THE CLASSICAL HYPOTHESIS TEST: 5 STEPS Step 4 The Probability Distribution: a. Determine the critical region and critical value(s).

a. Determine the entited region and entited value(3).

Critical Region: The set of values for the test statistic that will cause us to reject the null hypothesis.

Critical value(s): The "first" or "boundary" value(s) of the critical region(s).

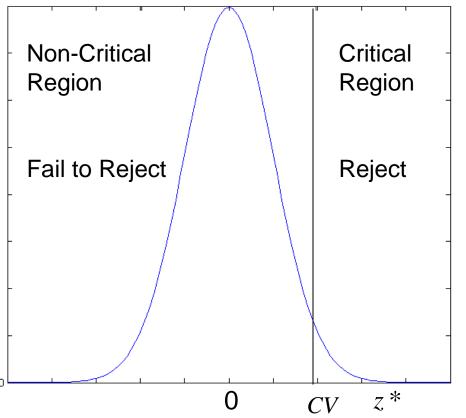
There are three possible hypothesis pairs for the mean.



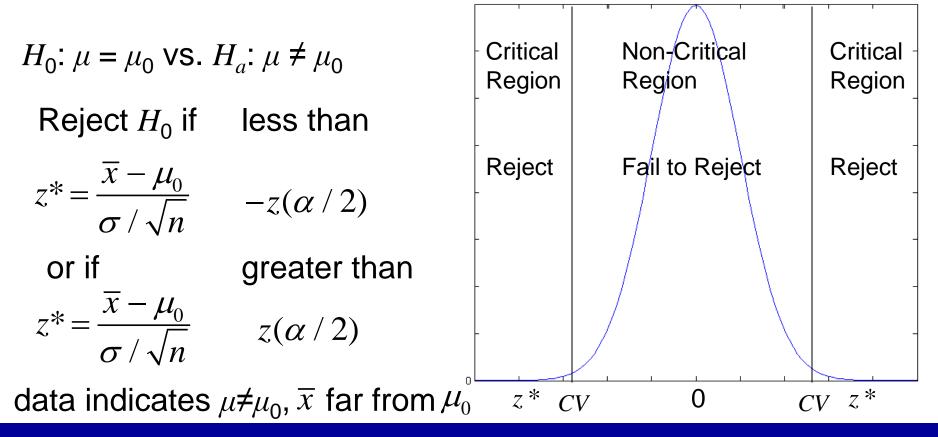
There are three possible hypothesis pairs for the mean.

 $H_0: \mu \le \mu_0 \text{ vs. } H_a: \mu > \mu_0$ Reject H_0 if greater then $z^* = \frac{\overline{x} - \mu_0}{\sigma / \sqrt{n}} \qquad z(\alpha)$

data indicates $\mu > \mu_0$ because \overline{x} is "a lot" larger than μ_0



There are three possible hypothesis pairs for the mean.



THE CLASSICAL HYPOTHESIS TEST: 5 STEPS Step 4 The Probability Distribution:

- a. Determine the critical region and critical value(s).
- b. Determine whether or not the calculated test statistic

is in the critical region.

critical region noncritical region

critical region

$$H_0: \mu = 69"$$
 vs. $H_a: \mu \neq 69"$
 $P(z > z(\alpha/2)) = \alpha/2$

z(.025) = 1.96since two sided test.

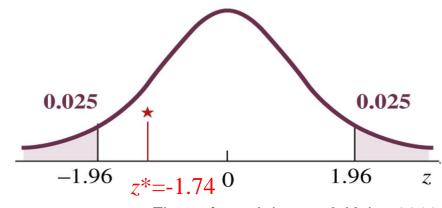


Figure from Johnson & Kuby, 2012.

8.5 Hypothesis Test of Mean (σ Known): Classical Approach

THE CLASSICAL HYPOTHESIS TEST: 5 STEPS Step 5 The Results:

- a. State the decision about H_0 .
 - Need a decision rule.

Decision rule:

a. If the test statistic falls within the critical region, then the decision must be **reject** H_0 .

b. If the test statistic is *not in the critical region*, then the decision must be **fail to reject** H_0 .

8.5 Hypothesis Test of Mean (σ Known): Classical Approach

THE CLASSICAL HYPOTHESIS TEST: 5 STEPS Step 5 The Results:

b. State the conclusion about H_a . With $\alpha = 0.05$,

there is not sufficient evidence to reject H_0 .

Fail to reject H_0 .

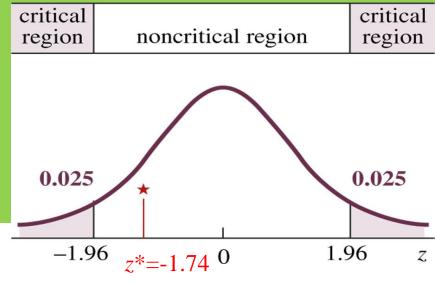


Figure from Johnson & Kuby, 2012.

8: Introduction to Statistical Inference $H_0: \mu \le \mu_0 \text{ vs. } H_a: \mu > \mu_0$ **8.5 Hypothesis Test of Mean (** σ Known): Classical Approach

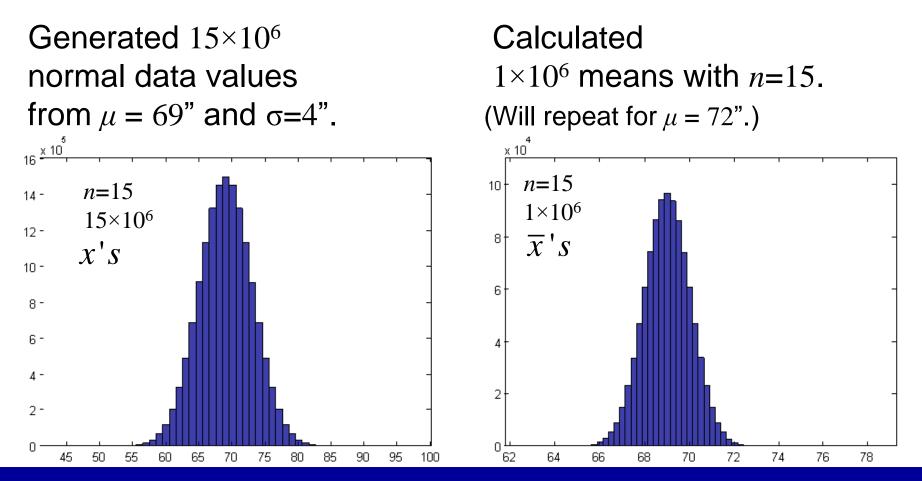
Let's examine the hypothesis test

 $H_0: \mu \le 69"$ vs. $H_a: \mu > 69"$

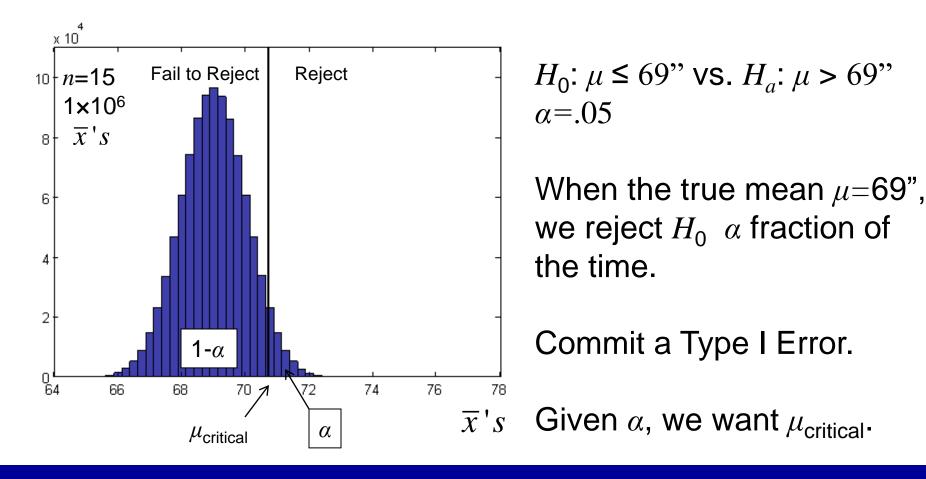
with α =0.05 for the heights of Math 1700 students.

Generate random data values.

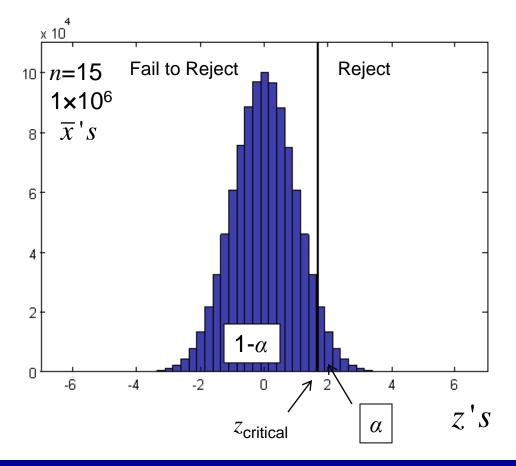
8: Introduction to Statistical Inference $H_0: \mu \le \mu_0 \text{ vs. } H_a: \mu > \mu_0$ **8.5 Hypothesis Test of Mean (** σ Known): Classical Approach



8: Introduction to Statistical Inference $H_0: \mu \le \mu_0 \text{ vs. } H_a: \mu > \mu_0$ **8.5 Hypothesis Test of Mean (** σ Known): Classical Approach



8: Introduction to Statistical Inference $H_0: \mu \le \mu_0 \text{ vs. } H_a: \mu > \mu_0$ 8.5 Hypothesis Test of Mean (σ Known): Classical Approach

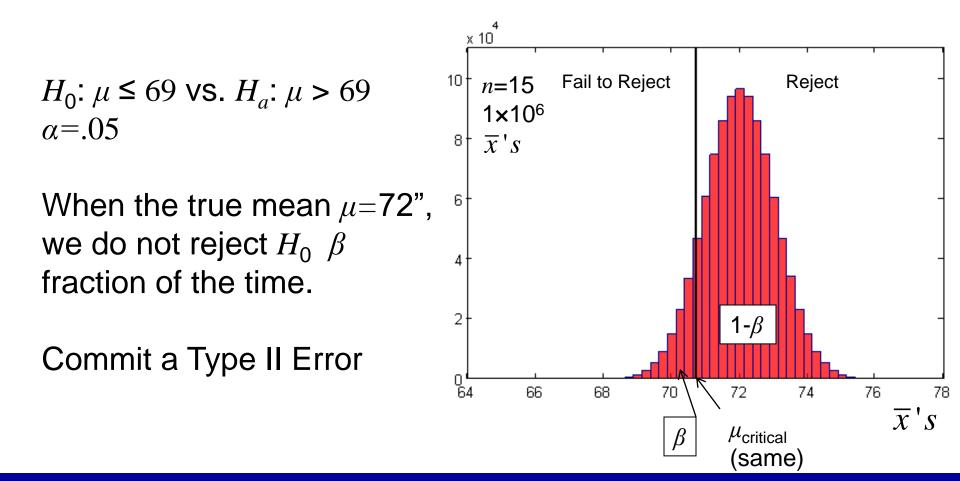


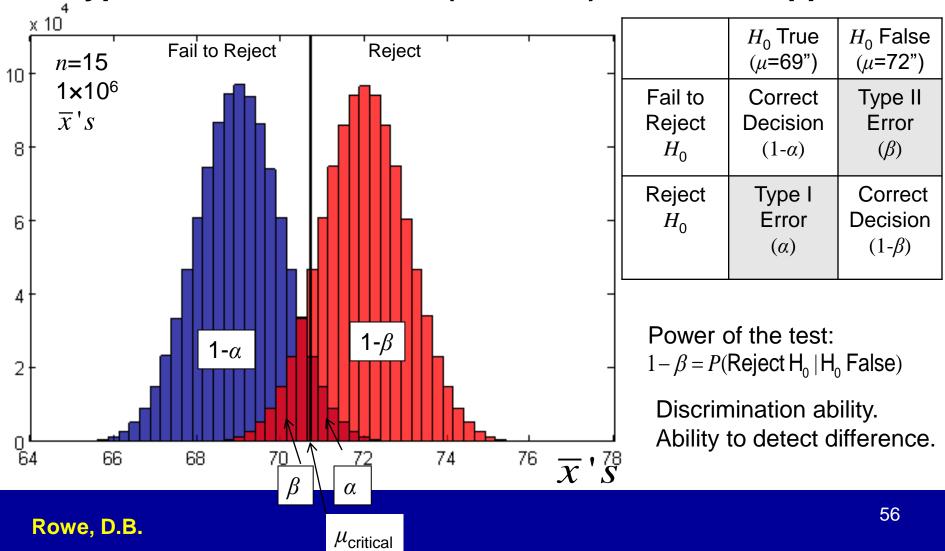
Instead of μ_{critical} we find critical *z*, $z_{\text{critical}}=z(\alpha)$.

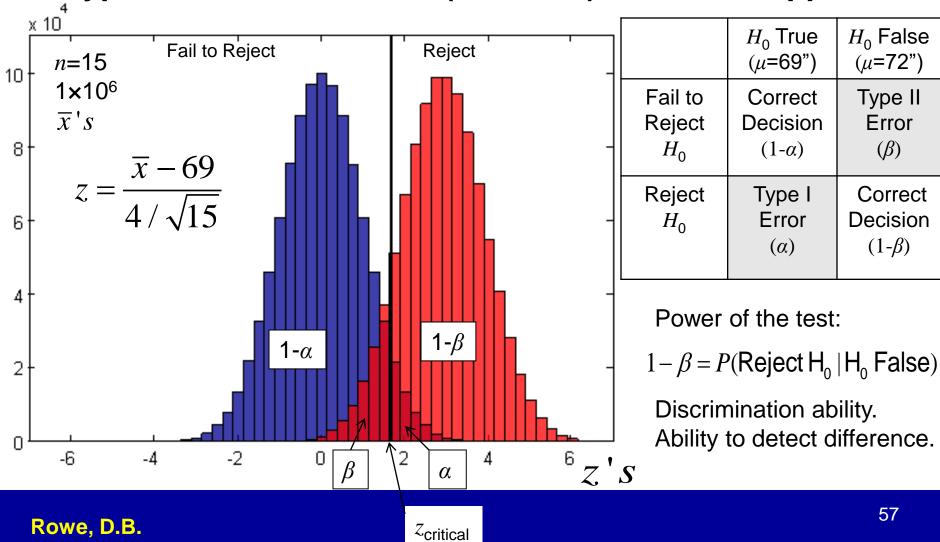
Do this by assuming that H_0 : μ =69" is true, then calculate

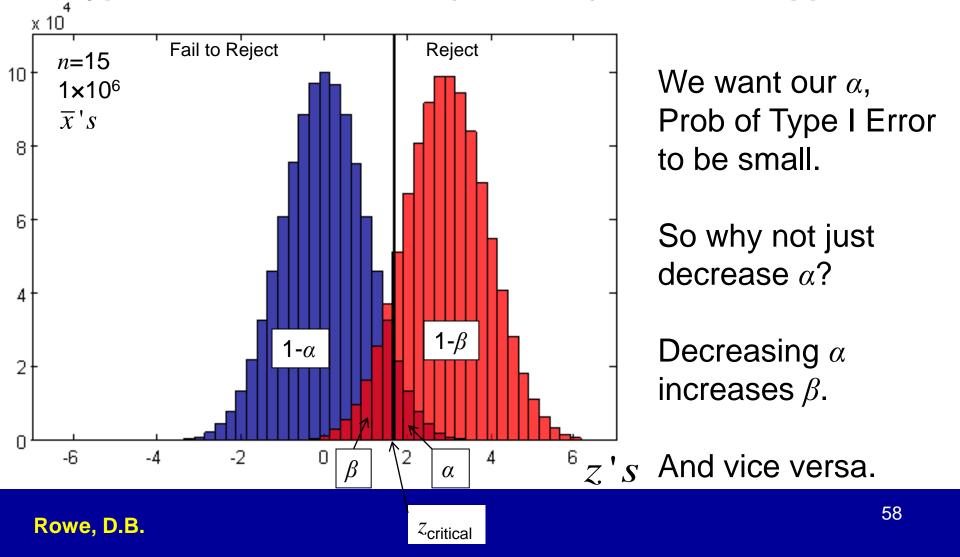
$$z = \frac{\overline{x} - 69}{4 / \sqrt{15}}$$

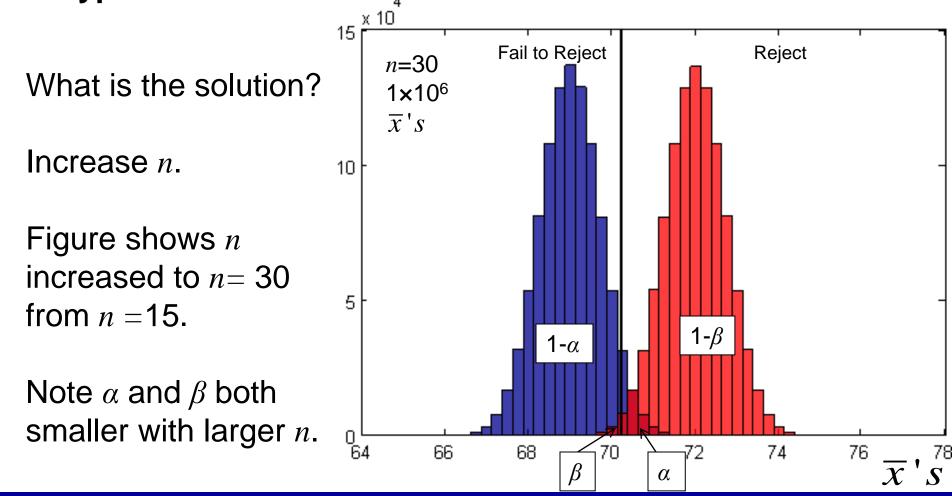
8: Introduction to Statistical Inference $H_0: \mu \le \mu_0 \text{ vs. } H_a: \mu > \mu_0$ **8.5 Hypothesis Test of Mean (** σ Known): Classical Approach



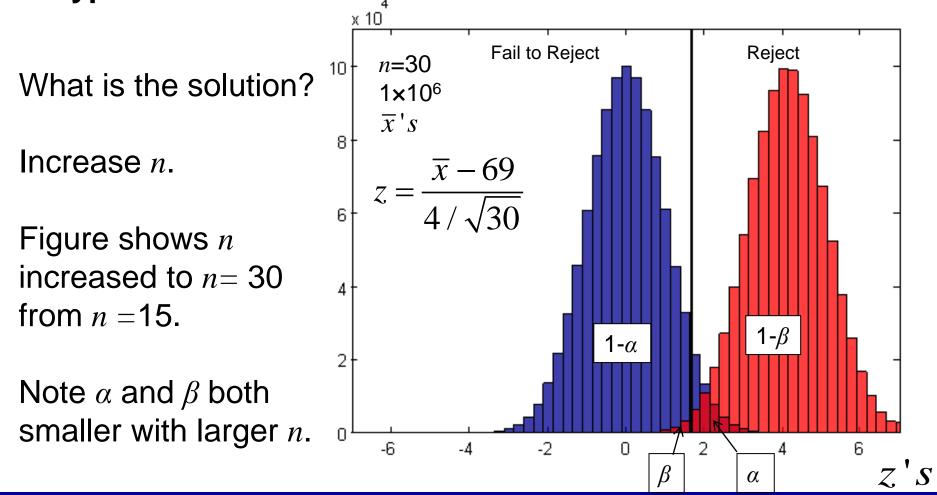








Rowe, D.B.



Rowe, D.B.

Chapter 8: Introduction to Statistical Inference

Questions?

Homework: Read 8.3-8.5 WebAssign Chapter 8 # 57, 59, 81, 93, 97, 106, 109, 119, 145, 157

