MATH 1700

Class 12

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

Be The Difference.

Copyright by D.B. Rowe

Agenda:

Recap Chapter 7.2 – 7.3

Discussion of Chapters

Lecture Chapter 8.1 – 8.2

7: Sample Variability

7.2 The Sampling Distribution of Sample Means

Sample distribution of sample means (SDSM): If random samples of size *n*, are taken from ANY population with mean μ and standard deviation σ , then the SDSM:

1. A mean
$$\mu_{\bar{x}}$$
 equal to μ

2. A standard deviation $\sigma_{\bar{x}}$ equal to \sqrt{n}

Central Limit Theorem (CLT): The sampling distribution of sample means will more closely resemble the normal distribution as the sample size *n* increases.

7: Sample Variability

7.2 The Sampling Distribution of Sample Means

Example:

N=5 balls in bucket, select n=1 with replacement. 0, 2, 4, 6, 8.

7: Sample Variability

7.2 The Sampling Distribution of Sample Means

Example:

N=5 balls in bucket, select n=2 with replacement.

0, 2, 4, 6, 8.

0

4

2

6

8

MATH 1700

 σ

 \sqrt{n}

1. A mean μ_x equal to μ

2. A standard deviation σ_{τ} equal to

7: Sample Variability

7.2 The Sampling Distribution of Sample Means

Rowe, D.B.

- 7: Sample Variability
- **Questions?**

Homework: Read Chapter 7.1-7.3 WebAssign Chapter 7 # 6, 21, 23, 29, 33, 35

Discussion: Chapters

Rowe, D.B.

We're moving into a new phase of the course...

Part III on Inferential Statistics.

Parts I and II were all foundational material for

Part III.

Part I: Descriptive Statistics Chapter 1: Statistics Background material. Definitions.

Chapter 2: Descriptive Analysis and Presentation of single variable data

Graphs, Central Tendency, Dispersion, Position

Chapter 3: Descriptive Analysis and Presentation of bivariate data

Scatter plot, Correlation, Regression

Part II: Probability Chapter 4: Probability Conditional, Rules, Mutually Exclusive, Independent

Chapter 5: Probability Distributions (Discrete) Random variables, Probability Distributions, Mean & Variance, Binomial Distribution with Mean & Variance

Chapter 6: Probability Distributions (Continuous) Normal Distribution, Standard Normal, Applications, Notation

Chapter 7: Sample Variability Sampling Distributions, SDSM, CLT

Part III: Inferential Statistics Chapter 8: Introduction to Statistical Inferences Confidence Intervals, Hypothesis testing

Chapter 9: Inferences Involving One Population Mean μ (σ unknown), proportion p, variance σ^2

Chapter 10: Inferences Involving Two Populations Difference in means μ_1 - μ_2 , proportions p_1 - p_2 , variances σ_1^2 / σ_2^2

Part IV: More Inferential Statistics Chapter 11: Applications of Chi-Square Chi-square statistics. We will discuss later.

Part IV: More Inferential Statistics Chapter 11: Applications of Chi-Square Hypothesis testing for Contingency Tables.

Chapter 12: Analysis of Variance Hypothesis testing for differences in more than two means μ_1, μ_2, μ_3

Chapter 13: Linear Correlation and Regression Analysis Hypothesis testing on correlation coefficient ρ and slope β_1 .

Chapter 14: Elements of Nonparametric Analysis Distribution free hypothesis tests.

Rowe, D.B.

MATH 1700

Lecture Chapter 8.1-8.2

Chapter 8: Introduction to Statistical Inference

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

Be The Difference.

Rowe, D.B.

The purpose of Statistical Inference is to use the info in a sample of data to increase knowledge of a population.

We discussed how if we compute a quantity from a population

of data then it is called a parameter and if we estimate it from

a sample of data then it is called a statistic.

Recall: Chapter 1 definitions. **Parameter:** A numerical value summarizing all the data of an entire population.

Statistic: A numerical value summarizing the sample data.

More precisely, a single number to estimate a parameter is

called a point estimate.

Point estimate for a parameter: A single number designed to estimate a quantitative parameter of a population, usually the value of the corresponding **sample statistic**.

i.e. \overline{x} is a point estimate for μ

Interval estimate: An interval bounded by two values and used to estimate the value of a population parameter. The values that bound this interval are statistics calculated from the sample that is being used as the basis for estimation.

i.e. $\overline{x} \pm (\text{some amount})$ is an interval estimate for μ .

The interval estimate will be of the form point estimate \pm some amount

Significance Level: Pre assigned probability of a parameter being outside our interval estimate, α .

 $P(\mu \text{ not in } \overline{x} \pm \text{ some amount}) = \alpha \longleftarrow i.e. .05$

 $1 - P(\overline{x} - \text{some amount} < \mu < \overline{x} + \text{some amount}) = \alpha$

Take many samples and for each calculate interval estimate ... then

Level of Confidence 1- α : The proportion of all interval estimates that include the parameter being estimated. i.e μ

 $P(\mu \text{ in } \overline{x} \pm \text{ some amount}) = 1 - \alpha$

 $P(\overline{x} - \text{some amount} < \mu < \overline{x} + \text{some amount}) = 1 - \alpha$

Rowe, D.B.

Confidence Interval: An interval estimate with a specified level of confidence.

A range of values for the parameter with a level of confidence attached. (i.e. 95% confident)

point estimator \pm some amount that depends on

confidence level

 $\overline{x} \pm \text{some amount}(1 - \alpha)$

The general form for a confidence interval is point estimate \pm margin of error

 $1 - \alpha$

The assumption for estimating mean μ using a known σ : The sampling distribution of \overline{x} has a normal distribution.

Recall from Chapter 6 that for the standard normal distribution, P(-1.96 < z < 1.96) = 0.95

From the CLT in Chapter 7, we know that when *n* is "large," the sample mean \overline{x} is approximately normally distributed with

$$\mu_{\overline{x}} = \mu, \qquad \sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}$$

Rowe, D.B.

 $z(\alpha/2)$

1.96

0

 $1-\alpha$

.95

8: Introduction to Statistical Inference 8.2 Estimation of Mean μ (σ Known) $P(-z(\alpha/2) < z < z(\alpha/2)) = 1 - \alpha$

With some algebra, we can see that (fill in)

8: Introduction to Statistical Inference 8.2 Estimation of Mean μ (σ Known) $P(-z(\alpha/2) < z < z(\alpha/2)) = 1 - \alpha$

With some algebra, we can see that

$$-z(\alpha/2) < z$$

$$-z(\alpha/2) < \frac{\overline{x} - \mu_{\overline{x}}}{\sigma_{\overline{x}}}$$

$$-z(\alpha/2) \frac{\sigma}{\sqrt{n}} < \overline{x} - \mu$$

$$-z(\alpha/2) \frac{\sigma}{\sqrt{n}} - \overline{x} < -\mu$$

$$\overline{x} + z(\alpha/2) \frac{\sigma}{\sqrt{n}} > \mu$$

MATH 1700

8: Introduction to Statistical Inference 8.2 Estimation of Mean μ (σ Known) $P(-z(\alpha/2) < z < z(\alpha/2)) = 1 - \alpha$

With some algebra, we can see that

and

 $z(\alpha/2) > z$ $z(\alpha/2) > \frac{\overline{x} - \mu_{\overline{x}}}{\sigma_{\overline{x}}}$

$$z(\alpha/2)\frac{\partial}{\sqrt{n}} > \overline{x}-\mu$$

$$z(\alpha/2)\frac{\sigma}{\sqrt{n}}-\overline{x} > -\mu$$

$$\overline{x} - z(\alpha/2) \frac{\sigma}{\sqrt{n}} < \mu$$

Thus, a $(1-\alpha) \times 100\%$ confidence interval for μ is

$$\overline{x} - z(\alpha / 2) \frac{\sigma}{\sqrt{n}} < \mu < \overline{x} + z(\alpha / 2) \frac{\sigma}{\sqrt{n}}$$

which if α =0.05, a 95% confidence interval for μ is

$$\overline{x}$$
 - 1.96 $\frac{\sigma}{\sqrt{n}} < \mu < \overline{x} + 1.96 \frac{\sigma}{\sqrt{n}}$

Confidence Interval for Mean:

$$\overline{x} - z(\alpha/2) \frac{\sigma}{\sqrt{n}}$$
 to $\overline{x} + z(\alpha/2) \frac{\sigma}{\sqrt{n}}$

(8.1)

Rowe, D.B.

THE CONFIDENCE INTERVAL: A FIVE STEP PROCESS Step 1 The Set-UP:

Step 2 Confidence Interval Criteria:

Step 3 The Sample Evidence:

Step 4 The Confidence Interval:

Step 5 The Results:

Your Book describes as a 5 step process.

Read this. Important.

Philosophically, μ is fixed and the interval varies.

If we take a sample of data, $x_1, ..., x_n$ and determine a confidence interval from it, we get. $\overline{x} \pm z(\alpha/2) \frac{\sigma}{\sqrt{n}}$

If we had a different sample of data,
$$y_1, ..., y_n$$
 we would have determined a different confidence interval.

$$\overline{y} \pm z(\alpha / 2) \frac{\sigma}{\sqrt{n}}$$

Figure from Johnson & Kuby, 2012.

We never truly know if our CI from our sample of data will

contain the true population mean μ .

But we do know that there is a $(1-\alpha) \times 100\%$ chance

that a confidence interval from a sample of data will contain μ .

MATH 1700

8: Introduction to Statistical Inference 8.2 Estimation of Mean μ (σ Known)

Rowe, D.B.

Rowe, D.B.

Marquette University

8: Introduction to Statistical Inference 8.2 Estimation of Mean μ (σ Known)

Form 1 million U and L values from \overline{x} 's. n=5 and $\sigma = 57.7$ $U = \overline{x} + 1.96\sigma / \sqrt{n}$ insert each \overline{x} $L = \overline{x} - 1.96\sigma / \sqrt{n}$

$\mathbf{\hat{B}}_{\mathbf{x}}^{\mathbf{x}} \mathbf{\hat{S}}_{\mathbf{x}}^{\mathbf{x}} \mathbf{\hat{S}}_{\mathbf{x}}^{\mathbf{x}$

Marquette University

8: Introduction to Statistical Inference 8.2 Estimation of Mean μ (σ Known)

Form 1 million U and L values from \overline{x} 's. n=5 and $\sigma = 57.7$ $U = \overline{x} + 1.96\sigma / \sqrt{n}$ $U_{\mu} = \sum_{\mu} \frac{1}{2} \frac{1}{2}$

Random,
$$\bar{x}$$
's
 $\bar{L}_{\bar{x}} = 49.4250$
 $\bar{U}_{\bar{x}} = 150.6389$

We will also get 1 million L's and U's that we can use to make histograms.

MATH 1700

MATH 1700

 $\mu = 100 \\ \sigma = 57.7$

8: Introduction to Statistical Inference 8.2 Estimation of Mean μ (σ Known)

Rowe, D.B.

$$P(\mu \text{ not in } \overline{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}) = \alpha$$

Rowe, D.B.

 $\mu = 66.5$

 $\sigma = 57.7$

69,69,67,66,71,74,75,70,67,73,64,65,68,67,65

Example:

Example:

69,69,67,66,71,74,75,70,67,73,64,65,68,67,65

$$\overline{x} - z(\alpha/2) \frac{\sigma}{\sqrt{n}}$$
 to $\overline{x} + z(\alpha/2) \frac{\sigma}{\sqrt{n}}$

Example:

69,69,67,66,71,74,75,70,67,73,64,65,68,67,65

$$\overline{x} = 68.7 \qquad \sigma = 4 \qquad \overline{x} - z(\alpha/2)\frac{\sigma}{\sqrt{n}} \text{ to } \overline{x} + z(\alpha/2)\frac{\sigma}{\sqrt{n}}$$
$$\alpha = .05$$

Example:

69,69,67,66,71,74,75,70,67,73,64,65,68,67,65

$$\overline{x} = 68.7 \qquad \sigma = 4 \qquad \overline{x} - z(\alpha/2)\frac{\sigma}{\sqrt{n}} \text{ to } \overline{x} + z(\alpha/2)\frac{\sigma}{\sqrt{n}}$$

$$z(.025) = 1.96$$

$$\underbrace{z(.025) = 1.96}_{0.01} \underbrace{z(.025) = z}_{0.02}$$

$$\underbrace{0.00}_{0.01} \underbrace{0.02}_{0.02} \underbrace{0.03}_{0.04} \underbrace{0.05}_{0.9744} \underbrace{0.06}_{0.9750} \underbrace{0.08}_{0.9762} \underbrace{0.09}_{0.9767} 41$$

Example:

69,69,67,66,71,74,75,70,67,73,64,65,68,67,65

Sample Size Determination Recall that our Confidence Interval was $\overline{x} \pm$ some amount

which was say $\overline{x} \pm z(\alpha/2)\frac{\sigma}{\sqrt{n}}$.

Maximum Error of Estimate

$$E = z(\alpha / 2) \frac{\sigma}{\sqrt{n}}$$
 (8.2)

then we can rewrite as

Sample Size $n = \left(\frac{z(\alpha / 2)\sigma}{E}\right)^2$ (8.3)

$$n = \left(\frac{z(\alpha / 2)\sigma}{E}\right)^2$$

In this, $z(\alpha/2)$ is known with specification of α .

We can set an *E* and set σ (or get it from previous data) to obtain a minimum sample size *n* to achieve *E*.

Used a lot in Biological applications to determine how many subjects and most IRBs require an estimate of n.

Example:

Determine the sample size *n* needed to estimate the mean height in this class to within 1 inch with 95% confidence. Assume that we know that σ =4.

Example:

Determine the sample size *n* needed to estimate the mean height in this class to within 1 inch with 95% confidence. Assume that we know that $\sigma=4$.

$$n = \left(\frac{z(\alpha / 2)\sigma}{E}\right)^2$$

Example:

Determine the sample size *n* needed to estimate the mean height in this class to within 1 inch with 95% confidence. Assume that we know that $\sigma=4$.

$$E = 1$$

 $\alpha = .05$
 $z(.025) = 1.96$

$$n = \left(\frac{z(\alpha / 2)\sigma}{E}\right)^{2}$$
$$n = \left(\frac{1.96 * 4}{1}\right)^{2}$$
$$n = 61.46$$
$$n = 62$$

Chapter 8: Introduction to Statistical Inference

Questions?

Homework: Read Chapter 8.1-8.2 WebAssign Chapter 8 # 5, 15, 22, 24, 35, 47