Class 12

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

Be The Difference.

Copyright by D.B. Rowe

Agenda:

Recap Chapter 7.2 – 7.3

Discussion of Chapters

Lecture Chapter 8.1 – 8.2

7: Sample Variability

7.2 The Sampling Distribution of Sample Means

Sample distribution of sample means (SDSM): If random samples of size *n*, are taken from ANY population with mean μ and standard deviation σ , then the SDSM:

1. A mean $\mu_{\overline{x}}$ equal to μ

2. A standard deviation $\sigma_{\scriptscriptstyle \overline{x}}$ equal to $\overline{\sqrt{n}}$

Central Limit Theorem (CLT): The sampling distribution of sample means will more closely resemble the normal distribution as the sample size *n* increases.

 σ

7: Sample Variability

7.2 The Sampling Distribution of Sample Means

Example:

N=5 balls in bucket, select *n*=1 *with* replacement. 0, 2, 4, 6, 8.

0 2 6 $\overline{8}$ \mathcal{X} | $P(x)$ $0 \mid 1/5$ $2 \mid 1/5$ $4 \mid 1/5$ 6 $1/5$ $8 \mid 1/5$ **0 2 4 6 8 0 0.04 0.08 0.12 0.16 0.2** *x* $P(x)$

7: Sample Variability

7.2 The Sampling Distribution of Sample Means

Example:

N=5 balls in bucket, select *n*=2 *with* replacement.

0, 2, 4, 6, 8.

0) (2)

 $4)$ (6)

 (8)

 σ

 \sqrt{m}

1. A mean $\mu_{\rm r}$ equal to μ

2. A standard deviation σ_r equal to

7: Sample Variability

7.2 The Sampling Distribution of Sample Means

- **7: Sample Variability**
- Questions?

Homework: Read Chapter 7.1-7.3 WebAssign Chapter 7 # 6, 21, 23, 29, 33, 35

Discussion: Chapters

We're moving into a new phase of the course…

Part III on Inferential Statistics.

Parts I and II were all foundational material for

Part III.

Part I: Descriptive Statistics Chapter 1: Statistics Background material. Definitions.

Chapter 2: Descriptive Analysis and Presentation of single variable data

Graphs, Central Tendency, Dispersion, Position

Chapter 3: Descriptive Analysis and Presentation of bivariate data

Scatter plot, Correlation, Regression

Part II: Probability Chapter 4: Probability Conditional, Rules, Mutually Exclusive, Independent

Chapter 5: Probability Distributions (Discrete) Random variables, Probability Distributions, Mean & Variance, Binomial Distribution with Mean & Variance

Chapter 6: Probability Distributions (Continuous) Normal Distribution, Standard Normal, Applications, Notation

Chapter 7: Sample Variability Sampling Distributions, SDSM, CLT

Part III: Inferential Statistics Chapter 8: Introduction to Statistical Inferences Confidence Intervals, Hypothesis testing

Chapter 9: Inferences Involving One Population Mean μ (σ unknown), proportion p , variance $σ²$

Chapter 10: Inferences Involving Two Populations Difference in means μ_1 - μ_2 , proportions p_1 - p_2 , variances σ_1^2 / σ_2^2 $\sigma_{\rm 1}^{\rm 2}$ / $\sigma_{\rm 2}^{\rm 2}$

Part IV: More Inferential Statistics Chapter 11: Applications of Chi-Square Chi-square statistics. …. We will discuss later.

Part IV: More Inferential Statistics Chapter 11: Applications of Chi-Square Hypothesis testing for Contingency Tables.

Chapter 12: Analysis of Variance Hypothesis testing for differences in more than two means μ_1, μ_2, μ_3

Chapter 13: Linear Correlation and Regression Analysis Hypothesis testing on correlation coefficient *ρ* and slope $β_1$.

Chapter 14: Elements of Nonparametric Analysis Distribution free hypothesis tests.

Lecture Chapter 8.1- 8.2

Chapter 8: Introduction to Statistical Inference

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

Be The Difference.

The purpose of Statistical Inference is to use the info in a sample of data to increase knowledge of a population.

We discussed how if we compute a quantity from a population

of data then it is called a parameter and if we estimate it from

a sample of data then it is called a statistic.

Recall: Chapter 1 definitions. **Parameter:** A numerical value summarizing all the data of an entire population.

Statistic: A numerical value summarizing the sample data.

More precisely, a single number to estimate a parameter is

called a point estimate.

Point estimate for a parameter: A single number designed to estimate a quantitative parameter of a population, usually the value of the corresponding **sample statistic**.

i.e. \overline{x} is a point estimate for μ

Interval estimate: An interval bounded by two values and used to estimate the value of a population parameter. The values that bound this interval are statistics calculated from the sample that is being used as the basis for estimation.

i.e. $\overline{x} \pm$ (some amount) is an interval estimate for μ .

The interval estimate will be of the form point estimate \pm some amount

Significance Level: Pre assigned probability of a parameter being outside our interval estimate, *α*.

P(μ not in $\bar{x} \pm$ some amount) = α i.e. .05

 $1 - P(\bar{x} -$ some amount $\lt \mu \lt \bar{x} +$ some amount) = α

Take many samples and for each calculate interval estimate … then.

Level of Confidence 1-*α***:** The proportion of all interval estimates that include the parameter being estimated. i.e *μ*

 $P(u \text{ in } \bar{x} \pm \text{some amount}) = 1 - \alpha$

P(\bar{x} – some amount $< \mu < \bar{x}$ + some amount) = 1 – α

Confidence Interval: An interval estimate with a specified level of confidence.

A range of values for the parameter with a level of confidence attached. (i.e. 95% confident)

point estimator \pm some amount that depends on

confidence level

The general form for a confidence interval is point estimate \pm margin of error $\overline{x} \pm$ some amount(1- α)
he general form for a confidence interval is
point estimate \pm margin of error

1- α

The assumption for estimating mean *μ* **using a known σ:** The sampling distribution of \bar{x} has a normal distribution.

Recall from Chapter 6 that for the standard normal distribution, $P(-1.96 < z < 1.96) = 0.95$

From the CLT in Chapter 7, we know that when *n* is "large," the sample mean \bar{x} is approximately normally distributed with

$$
\mu_{\overline{x}} = \mu, \qquad \sigma_{\overline{x}} = \frac{\sigma}{\sqrt{n}}
$$

Rowe, D.B.

8: Introduction to Statistical Inference 8.2 Estimation of Mean *μ* **(***σ* **Known)**

 $z(a)$ is the value of *z* with an area a larger than it

.95

 $1-\alpha$

With some algebra, we can see that …. (fill in) *P*(−*z*(α / 2) < *z* < *z*(α / 2)) = 1 − α

.... (fill in)

25

8: Introduction to Statistical Inference 8.2 Estimation of Mean *μ* **(***σ* **Known)** $P(-z(\alpha/2) < z < z(\alpha/2)) = 1 - \alpha$

With some algebra, we can see that

$$
-z(\alpha/2) < z
$$
\n
$$
-z(\alpha/2) < \frac{\overline{x} - \mu_{\overline{x}}}{\sigma_{\overline{x}}}
$$
\n
$$
-z(\alpha/2)\frac{\sigma}{\sqrt{n}} < \overline{x} - \mu
$$
\n
$$
-z(\alpha/2)\frac{\sigma}{\sqrt{n}} - \overline{x} < -\mu
$$
\n
$$
\overline{x} + z(\alpha/2)\frac{\sigma}{\sqrt{n}} > \mu
$$

8: Introduction to Statistical Inference 8.2 Estimation of Mean *μ* **(***σ* **Known)** $P(-z(\alpha/2) < |z < z(\alpha/2)|) = 1 - \alpha$

With some algebra, we can see that

and

z

 α

 α

 $(\alpha$ / 2) $(\alpha/2)$ > $\frac{\cdots \cdots \cdots}{\cdots}$ *x z z x* μ σ $>$ > <u>^</u>

 $z(\alpha/2)$ ⁻ $\frac{\ }{}$ > \bar{x} *n* σ $\alpha/2$) \rightarrow $x - \mu$

$$
z(\alpha/2)\frac{\sigma}{\sqrt{n}}-\overline{x} \quad > \quad -\mu
$$

 \overline{x} – $z(\alpha / 2)$ *n* σ $-z(\alpha/2)$ \rightarrow α

Thus, a $(1-\alpha) \times 100\%$ confidence interval for μ is

$$
\overline{x} - z(\alpha/2) \frac{\sigma}{\sqrt{n}} < \mu < \overline{x} + z(\alpha/2) \frac{\sigma}{\sqrt{n}}
$$

which if α =0.05, a 95% confidence interval for μ is
 \overline{x} -1.96 $\frac{\sigma}{\sqrt{2}}$ < μ < \overline{x} +1.96 $\frac{\sigma}{\sqrt{2}}$

which it
$$
\alpha = 0.03
$$
, a 95% **consquare in**

\n
$$
\overline{x} - 1.96 \frac{\sigma}{\sqrt{n}} < \mu < \overline{x} + 1.96 \frac{\sigma}{\sqrt{n}}.
$$

Confidence Interval for Mean:

$$
\overline{x} - z(\alpha/2) \frac{\sigma}{\sqrt{n}} \quad \text{to} \quad \overline{x} + z(\alpha/2) \frac{\sigma}{\sqrt{n}}
$$
 (8.1)

THE CONFIDENCE INTERVAL: A FIVE STEP PROCESS Step 1 The Set-UP:

Step 2 Confidence Interval Criteria:

Step 3 The Sample Evidence:

Step 4 The Confidence Interval:

Step 5 The Results:

Your Book describes as a 5 step process.

Read this. Important.

Philosophically, *μ* is fixed and the interval varies.

If we take a sample of data, x_1, \ldots, x_n and determine a confidence interval from it, we get.

$$
\overline{x} \pm z(\alpha/2) \frac{\sigma}{\sqrt{n}}
$$

If we had a different sample of data, y_1 , y_n we would have determined a different confidence interval.

$$
\overline{y} \pm z(\alpha/2) \frac{\sigma}{\sqrt{n}}
$$

Figure from Johnson & Kuby, 2012.

We never truly know if our CI from our sample of data will

contain the true population mean *μ*.

But we do know that there is a $(1-\alpha) \times 100\%$ chance

that a confidence interval from a sample of data will contain *μ*.

Marquette University Mathematic Contract Contract

8: Introduction to Statistical Inference 8.2 Estimation of Mean *μ* **(***σ* **Known)**

Form 1 million *U* and *L* values from \overline{x} 's. n =5 and σ = 57.7 $U = \overline{x} + 1.96\sigma / \sqrt{n}$ $L = \overline{x}$ - 1.96σ / \sqrt{n} insert each *x*

0 1 2 3 4 5 6 7 8 9 10 x 10⁴ \overline{x} ^{*s*} s

0 20 40 60 80 100 120 140 160 180 200

Marquette University Mathematic Contract Contract

8: Introduction to Statistical Inference 8.2 Estimation of Mean *μ* **(***σ* **Known)**

Form 1 million *U* and *L* values from \overline{x} 's. n =5 and σ = 57.7 $U = \overline{x} + 1.96\sigma / \sqrt{n}$ $L = \overline{x}$ - 1.96 σ / \sqrt{n} insert each *x*

Random,
$$
\bar{x}'s
$$

\n $\bar{L}_{\bar{x}} = 49.4250$
\n $\bar{U}_{\bar{x}} = 150.6389$

Rowe, D.B.

We will also get 1 million *L*'s and *U*'s that we can use to make histograms.

35

 $\sigma = 57.7$

 μ = 100

8: Introduction to Statistical Inference 8.2 Estimation of Mean *μ* **(***σ* **Known)**

Rowe, D.B.

$$
P(\mu \text{ not in } \overline{x} \pm 1.96 \frac{\sigma}{\sqrt{n}}) = \alpha
$$

 $\sigma = 57.7$

69,69,67,66,71,74,75,70,67,73,64,65,68,67,65

Example:

69,69,67,66,71,74,75,70,67,73,64,65,68,67,65

Example:

$$
\overline{x}
$$
 - z(α /2) $\frac{\sigma}{\sqrt{n}}$ to \overline{x} + z(α /2) $\frac{\sigma}{\sqrt{n}}$

69,69,67,66,71,74,75,70,67,73,64,65,68,67,65

Example:

$$
\overline{x} = 68.7 \qquad \sigma = 4 \qquad \qquad \overline{x} - z(\alpha/2) \frac{\sigma}{\sqrt{n}} \text{ to } \qquad \overline{x} + z(\alpha/2) \frac{\sigma}{\sqrt{n}}
$$

Example:

69,69,67,66,71,74,75,70,67,73,64,65,68,67,65

$$
\overline{x} = 68.7 \quad \sigma = 4 \quad \overline{x} - z(\alpha/2) \frac{\sigma}{\sqrt{n}} \text{ to } \overline{x} + z(\alpha/2) \frac{\sigma}{\sqrt{n}}
$$
\n
$$
z(.025) = 1.96 \quad z(.025) = \frac{1.96}{z} \quad \frac{1}{z} \quad \frac{0.00}{z(.025)} \quad \frac{0.01}{z} \quad \frac{0.02}{z} \quad \frac{0.03}{z} \quad \frac{0.04}{z} \quad \frac{0.05}{z} \quad \frac{0.06}{z} \quad \frac{0.07}{z} \quad \frac{0.08}{z} \quad \frac{0.09}{z} \quad \frac{0.09}{z} \quad \frac{41}{z} \quad \frac{0.0713}{z} \quad \frac{0.0713}{z} \quad \frac{0.9713}{z} \quad \frac{0.9
$$

Example:

69,69,67,66,71,74,75,70,67,73,64,65,68,67,65

Sample Size Determination Recall that our Confidence Interval was $\bar{x} \pm$ some amount

which was say $\bar{x} \pm z(\alpha/2) \frac{3}{\sqrt{2}}$. σ *x ± z n* $(\alpha$ / 2)

Maximum Error of Estimate

$$
E = z(\alpha / 2) \frac{\sigma}{\sqrt{n}}
$$
 (8.2)

then we can rewrite as

Sample Size $n = \frac{N}{F}$ (8.3) *z* (*α* / ∠)σ $n =$ *E* $\int z(\alpha/2) \sigma$ $\left(\frac{2(x+2)}{E}\right)$ $(\alpha$ / 2) σ \rangle^2

$$
n = \left(\frac{z(\alpha/2)\sigma}{E}\right)^2
$$

In this, *z*(*α*/2) is known with specification of *α*.

We can set an E and set σ (or get it from previous data) to obtain a minimum sample size *n* to achieve *E*.

Used a lot in Biological applications to determine how many subjects and most IRBs require an estimate of *n*.

Example:

Determine the sample size *n* needed to estimate the mean height in this class to within 1 inch with 95% confidence. Assume that we know that $\sigma = 4$.

Example:

Determine the sample size *n* needed to estimate the mean height in this class to within 1 inch with 95% confidence. Assume that we know that $\sigma = 4$. 2

$$
E = 1
$$

\n
$$
\alpha = .05
$$

\n
$$
z(.025) = 1.96
$$

\n
$$
n = \left(\frac{1}{E} \right)
$$

\n
$$
n = 1
$$

$$
n=\left(\frac{z(\alpha/2)\sigma}{E}\right)^2
$$

Example:

Determine the sample size *n* needed to estimate the mean height in this class to within 1 inch with 95% confidence. Assume that we know that $\sigma = 4$. 2

$$
E = 1
$$

\n
$$
\alpha = .05
$$

\n
$$
z(.025) = 1.96
$$

Assume that we know that
$$
\sigma=4
$$
.
\n $E = 1$
\n $\alpha = .05$
\n $z(.025) = 1.96$
\n $n = \left(\frac{1.96 * 4}{1}\right)^2$
\n $n = 61.46$
\n $n = 62$

Chapter 8: Introduction to Statistical Inference

Questions?

Homework: Read Chapter 8.1-8.2 **WebAssign** Chapter 8 # 5, 15, 22, 24, 35, 47