MATH 1700

Class 8

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

Be The Difference.

Copyright by D.B. Rowe

Agenda:

Review Chapters 1 – 5 (Exam 1 Chapters)

Just the highlights!

1. Summation Notation

$$\sum_{i=1}^{n} f(x_i) = f(x_1) + f(x_2) + \dots + f(x_n)$$

- **2. Factorials** $n!=n\times(n-1)\times(n-2)\times\cdots\times2\times1$
- 3. Computations

x=20, y=14, s=16, w=-2, m=15, n=10
Compute
$$x+y \cdot \frac{\sqrt{s}}{n} = 25.6$$

4. Simple Linear Equations

$$2 - 2x = 3x + 3$$
 $x = -1/5$

MATH 1700

1: Statistics

1.1 Americans Here's Looking at you

Statistics is all around us!

How much time between Internet usage?

Fretting Over Messages

Figure from Johnson & Kuby, 2012.

Source: Impulse Research for Qwest Communications online survey of 1,063 adult Wi-Fi users in April 2009.

1: Statistics

1.1 What is Statistics?

Population: A collection, or set, of individuals, objects, or events whose properties are to be analyzed.

Sample: Subset of the population.

Variable: A characteristic of interest about each individual element of a population or sample.

Data value: The value of the variable associated with one element of a population or sample.

Parameter: A numerical value summarizing all the data of an entire population.

Statistic: A numerical value summarizing the sample data.

1: Statistics

1.1 What is Statistics?

Data: The set of values collected from the variable from each of the elements that belong to the sample.

1: Statistics

- **1.1 What is Statistics?**
 - **Qualitative variable:** A variable that describes or categorizes an element of a population.
 - **Nominal variable:** A qualitative variable that characterizes an element of a population. No ordering. No arithmetic.
 - **Ordinal variable:** A qualitative variable that incorporates an ordered position, or ranking.
 - **Quantitative variable:** A variable that quantifies an element of a population.
 - **Discrete variable:** A quantitative variable that can assume a countable number of values. Gap between successive values.
 - **Continuous variable:** A quantitative variable that can assume an uncountable number of values. Continuum of values.

2: Descriptive Analysis and Single Variable Data 2.1 Graphs - Qualitative Data

Circle (pie) graphs and bar graphs:

Circle is parts to whole as angle.

Bar graph is amount in each category as rectangular areas.

Figures from Johnson & Kuby, 2012.

2: Descriptive Analysis and Single Variable Data **2.2 Frequency Distributions and Histograms**

Statistics Exam Scores [TA02-06]

Figures from Johnson & Kuby, 2012.

2: Descriptive Analysis and Single Variable Data 2.3 Measures of Central Tendency

Sample Mean: Usual average, p. 63 $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ **Sample Median:** Middle value, p. 64 n odd, $\tilde{x} = \frac{n+1}{2}$ value n even, avg $\frac{n}{2} \& \frac{n}{2} + 1$ values **Sample Mode:** Most often, p. 66 $\hat{x} = \text{most often}$

Measures of central tendency characterize center of distribution.

Measures of dispersion characterize the variability in the data.

MATH 1700

2: Descriptive Analysis and Single Variable Data 2.4 Measures of Dispersion

Range: H - L, p. 74

Deviation from mean: value minus sample mean, p. 74

$$i^{th}$$
 deviation from mean = $x_i - \overline{x}$

Sample Variance: avg squared dev using *n*-1 in den, p. 76

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} \qquad s^{2} = \frac{1}{n-1} \left\{ \sum_{i=1}^{n} x_{i}^{2} - \left[\left(\sum_{i=1}^{n} x_{i} \right)^{2} / n \right] \right\}$$

Sample Standard Deviation: $s = \sqrt{s^2}$

2: Descriptive Analysis and Single Variable Data 2.3, 2.4 Measures of Central Tendency and Dispersion

Example: Data values: 1,2,2,3,4

$$\overline{x} = 2.4$$
 $\hat{x} = 2$ $\tilde{x} = 2$

$$s^2 = 1.3$$
 $s = 1.1$

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $\hat{x} = \text{most often value}$ $\tilde{x} = \text{middle value}$

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} \qquad \qquad s = \sqrt{s^{2}}$$

2: Descriptive Analysis and Single Variable Data 2.5 Measures of Position

Measures of Position: Quartiles - ranked data into quarters

L = lowest value H = highest value Q_2 = median Q_1 = 25% smaller Q_3 = 75% smaller IQR = $Q_3 - Q_1$

MATH 1700

2: Descriptive Analysis and Single Variable Data 2.5 Measures of Position

Measures of Position: percentiles - rank data into 100ths

L = lowest value H = highest value $P_k =$ value where k% are smaller

1		Ran	ked d	ata, 11	ncreas	ing o	rder	
	1%	1%	1%	1%		1%	1%	1%
Ì	L P	$P_1 P_1$	P_2 P_2	P_3 P_3	$P_4 P$	P ₉₇ F	P ₉₈ F	P ₉₉ H

rank data

 p_k halfway between value and next one average of A^{th} and $(A+1)^{\text{th}}$ values

 p_k is value in next largest position, B+1 value

Figure from Johnson & Kuby, 2012.

2: Descriptive Analysis and Single Variable Data 2.5 Measures of Position

Standard score, or z-score: The position a particular value of *x* has relative to the mean, measured in standard deviations.

$$z_i = \frac{i^{\text{th}} \text{ value - mean}}{\text{std. dev.}} = \frac{x_i - \overline{x}}{s}$$

There can be *n* of these because we have $x_1, x_2, ..., x_n$.

3: Descriptive Analysis and Bivariate Data

3.1 Bivariate Data: two qualitative

Cross-tabulation tables or contingency tables

Example:

Construct a 2×3 table. Know different %ages.

Name	Gender	Major	Name	Gender	Major	Name	Gender	Major
Adams	M	LA	Feeney	Μ	Т	McGowan	Μ	BA
Argento	F	BA	Flanigan	\sim	LA	Mowers	F	BA
Baker	M	LA	Hodge	F	LA	Ornt	M	Т
Bennett	F	LA	Holmes	\sim	Т	Palmer	F	LA
Brand	\sim	Т	Jopson	F	Т	Pullen	M	Т
Brock	M	BA	Kee	\sim	BA	Rattan	\sim	BA
Chun	F	LA	Kleeberg	M	LA	Sherman	F	LA
Crain	M	Т	Light	M	BA	Small	F	Т
Cross	F	BA	Linton	F	LA	Tate	M	BA
Ellis	F	BA	lopez	M	Т	Yamamoto	\sim	LA

Gender	LA	BA	Т	Row Total
M F	5 6	6 4	7 2	18 12
Col. Total	11	10	9	30

M = male F = female LA = liberal arts BA = business admin T = technology

Figures from Johnson & Kuby, 2012.

3: Descriptive Analysis and Bivariate Data

3.1 Bivariate Data: one qualitative and one quantitative

Example:

Design A ($n = 6$)	Design B ($n = 6$)	Design C ($n = 6$)					
37 36 38	33 35 38	40 39 40					
34 40 32	34 42 34	41 41 43					

Figures from Johnson & Kuby, 2012.

MATH 1700

- **3: Descriptive Analysis and Bivariate Data**
- 3.1 Bivariate Data: two quantitative, Scatter Diagram

Example: Push-ups

Student	1	2	3	4	5	6	7	8	9	10
Push-ups, x	27	22	15	35	30	52	35	55	40	40
Sit-ups, y	30	26	25	42	38	40	32	54	50	43

Input variable: independent variable, *x*. **Output variable:** dependent variable, *y*.

Scatter Diagram: A plot of all the ordered pairs of bivariate data on a coordinate axis system.

(x,y) ordered pairs.

Figures from Johnson & Kuby, 2012.

3: Descriptive Analysis and Bivariate Data 3.2 Linear Correlation

Linear Correlation, *r*, is a measure of the strength of a linear relationship between two variables *x* and *y*.

Figure from Johnson & Kuby, 2012.

3: Descriptive Analysis and Bivariate Data

3.2 Linear Correlation

Example	 Push-ups, x Sit-ups, y 	27 30	22 26	15 25	35 42	30 38	52 40	35 32	55 54	40 50	40 43	
Student P	ush-ups, x	s, x x ²			Sit-ups, y					ху		
1 2 3 4 5 6 7 8 9 10	27 22 15 35 30 52 35 55 40 40		729 484 225 1,225 900 2,704 1,225 3,025 1,600 1.600			30 26 25 42 38 40 32 54 50 43		(()) ,) , () , () , () , () , () , () , ,) , , , ,	900 576 525 764 444 500 224 916 500 349		1 1 2 1 2 2 1	810 572 375 ,470 ,140 ,080 ,120 ,970 ,000 ,720
Σx sum	= 351 1 of x	$\sum x^2 = 1$ sum o	3,717 f x ²	Σ	Ey = 3 sum of	80 y	$\Sigma y^2 = sure sure sure sure sure sure sure sure$	= 15,2 m of y	298	Σxy su	= 14 m of	,257 xy

Figure from Johnson & Kuby, 2012.

3: Descriptive Analysis and Bivariate Data Linear Correlation

5: Descriptive Analysis and Bivariate Data
5: Linear Correlation
Example: Puthops, x 27 22 15 35 30 52 35 55 40 40
Stops, y 30 26 25 42 38 40 32 54 50 43

$$SS(x) = \sum_{i=1}^{n} x_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} x_i\right)^2 = 13717 - \frac{(351)^2}{10} = 1396.9$$

$$SS(y) = \sum_{i=1}^{n} y_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} y_i\right)^2 = 15298 - \frac{(380)^2}{10} = 858.0$$

$$\sum_{i=1}^{n} y_i^2 = 15298$$

$$SS(xy) = \sum_{i=1}^{n} x_i y_i - \frac{1}{n} \left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} y_i\right) = 14257 - \frac{(351)(380)}{10} = 919.0$$

$$r = \frac{SS(xy)}{\sqrt{SS(x)SS(y)}} = \frac{919.0}{\sqrt{(1396.9)(858.0)}} = 0.84$$
Eigure from Johnson & Kuby 2012

3: Descriptive Analysis and Bivariate Data 3.3 Linear Regression

 b_0 is estimated y-intercept b_1 is estimated slope.

 $\hat{y} = b_0 + b_1 x$ We try different lines until we find the "best" one, \mathcal{Y}^{G} y 3 5 2 ε 20 3 2 2 1 0 ^L 0 2 3 5 2 3 1 4 6 5 Х Х

Move line until sum of the squared residuals is a minimum.

3: Descriptive Analysis and Bivariate Data 3.3 Linear Regression $\int_{1}^{n} 1(\sum_{n=1}^{n} \sum_{n=1}^{n} 1)$

Marquette University

MATH 1700

4: Probability4.1 Probability of Events

An **experiment** is a process by which a measurement is taken or observations is made. i.e. flip coin or roll die

An outcome is the result of an experiment. i.e. Heads, or 3

Sample space is a listing of possible outcomes. i.e. $S = \{H, T\}$

An **event** is an outcome or a combination of outcomes. i.e. even number when rolling a die

MATH 1700

4.1 Probability of Events

Property 1:
$$0 \le P(A_i) \le 1$$

Property 2: $\sum_{i=1}^{n} P(O_i) = 1$
 $\sum_{i=1}^{n} P(O_i) = 1$

Approaches to probability. O_i are outcomes

(1) Empirical (AKA experimental)

empirical probability of $A = \frac{\text{number of times } A \text{ occured}}{\text{number of trials}}$

(2) Theoretical (AKA classical or equally likely)

theoretical probability of $A = \frac{\text{number of times } A \text{ occus in sample space}}{\text{number of elements in the sample space}}$

MATH 1700

4: Probability - Empirical

4.1 Probability of Events – Law of large numbers

Marquette University

4: Probability4.1 Probability of EventsSo let's flip a coin three times.

Can flip three times.

Sample space: listing of outcomes for 3 flips $S = \{HHH, HHT, HTH, HTT,$ $THH, THT, TTH, TTT\}$

$$P(HHH) = \frac{\# \text{ times } HHH \text{ occurs in } S}{\# \text{ elements in } S}$$

MATH 1700

P(Heart and Ace) = 1/52

Figure from Johnson & Kuby, 2012.

P(Heart or Ace) = P(Heart) + P(Ace) - P(Heart and Ace)

P(Heart or Ace) = 13 / 52 + 4 / 52 - 1 / 52 = 16 / 52

MATH 1700

Marquette University

4: Probability 4.3 Rules of Probability

Example: Pick Card, A=Heart, B=Ace $P(\overline{A}) = 1 - P(A)$ P(A or B) = P(A) + P(B) - P(A and B) $P(A \text{ and } B) = P(A) \cdot P(B \mid A)$ $P(A \mid B) = \frac{P(A \text{ and } B)}{P(B)}$

Figure from Johnson & Kuby, 2012.

4: Probability 4.5 Independent Events

Independent events: ... the occurrence or nonoccurence of one gives no information about ... occurrence for the other. P(A) = P(A | B) = P(A | not B)

Dependent events: ... occurrence of one event does have an effect on the probability of occurrence of the other event. $P(A) \neq P(A \mid B)$

Special multiplication rule:

Let *A* and *B* ... independent events ... in a sample space *S*. $P(A \text{ and } B) = P(A) \cdot P(B)$

5: Probability Distributions (Discrete Variables) 5.1 Random Variables

Random Variables: A variable that assumes a unique numerical value for each of the outcomes in the sample space of a probability experiment.

Example:

Let x = the number of heads when we flip a coin twice.

 $x=\{0,1,2\} \leftarrow \text{numerical values} \\ for \\ \{TT,TH,HT,HH\} \leftarrow \text{outcomes in sample space} \end{cases}$

5: Probability Distributions (Discrete Variables) 5.1 Random Variables

Discrete Random Variables: A quantitative random variable that can assume a countable number of values.

Continuous Random Variable: A quantitative random variable that can assume an uncountable number of values.

Continuum of values.

Examples: Discrete: Number of heads when we flip a coin ten times.

Continuous: Distance from earth center to sun center.

5: Probability Distributions (Discrete Variables) 5.2 Probability Distributions of a Discrete Random Variable

Random Variables: ... assumes a unique ... value for each of the outcomes in the sample space

Probability Function: A rule P(x) that assigns probabilities to the values of the random variable x.

n

5: Probability Distributions (Discrete Variables) 5.2 Mean and Variance of a Discrete Random Variable

$$\mu = \sum_{i=1}^{n} [x_i P(x_i)] = x_1 P(x_1) + x_2 P(x_2) + \dots + x_n P(x_n)$$

For the # of *H* when we flip a coin twice discrete distribution:

$$\mu = (x_1) \cdot P(x_1) + (x_2) \cdot P(x_2) + (x_3) \cdot P(x_3)$$

$$\mu = (0) \cdot P(0) + (1) \cdot P(1) + (2) \cdot P(2)$$

$$\mu = (0) \cdot (1/4) + (1) \cdot (1/2) + (2) \cdot (1/4)$$

$$\mu = 0 + 1/2 + 1/2$$

Rowe, D.B.

 $\mu = 1$

5: Probability Distributions (Discrete Variables) 5.2 Mean and Variance of a Discrete Random Variable

$$\sigma^{2} = \sum_{i=1}^{n} \left[(x_{i} - \mu)^{2} P(x_{i}) \right] = (x_{1} - \mu)^{2} P(x_{1}) + (x_{2} - \mu)^{2} P(x_{2}) + \dots + (x_{n} - \mu)^{2} P(x_{n})$$

For the # of *H* when we flip a coin twice discrete distribution:

$$\sigma^{2} = (x_{1}-\mu)^{2} \cdot P(x_{1}) + (x_{2}-\mu)^{2} \cdot P(x_{2}) + (x_{3}-\mu)^{2} \cdot P(x_{3}) \xrightarrow{\mu = 1} x | P(x_{3})$$

$$\sigma^{2} = (0-1)^{2} \cdot P(0) + (1-1)^{2} \cdot P(1) + (2-1)^{2} \cdot P(2) \xrightarrow{\sigma} 0 | \frac{1}{4} \times P(x_{3})$$

$$\sigma^{2} = (-1)^{2} \cdot (1/4) + (0)^{2} \cdot (1/2) + (1)^{2} \cdot (1/4) x_{1} \xrightarrow{\tau} 1 | \frac{1}{2} \times P(x_{1})$$

$$\sigma^{2} = 1/4 + 0 + 1/4 x_{2} \xrightarrow{\tau} 1 | \frac{1}{4} \times P(x_{2})$$

$$\sigma^{2} = 1/2 \rightarrow \sigma \approx 0.7071 x_{3} \xrightarrow{\tau} 2 | \frac{1}{4} \times P(x_{3})$$

Rowe, D.B.

MATH 1700

n

5: Probability Distributions (Discrete Variables) 5.2 Mean and Variance of a Discrete Random Variable

$$\sigma^{2} = \sum_{i=1}^{n} [x_{i}^{2}P(x_{i})] - \mu^{2} = [x_{1}^{2}P(x_{1}) + x_{2}^{2}P(x_{2}) + \dots + x_{n}P(x_{n})] - \mu^{2}$$

Alternate Formula

For the # of *H* when we flip a coin twice discrete distribution:

$$\sigma^{2} = x_{1}^{2} \cdot P(x_{1}) + x_{2}^{2} \cdot P(x_{2}) + x_{3}^{2} \cdot P(x_{3}) - \mu^{2}$$

$$\sigma^{2} = [0^{2} \cdot P(0) + 1^{2} \cdot P(1) + 2^{2} \cdot P(2)] - 1^{2}$$

$$\sigma^{2} = [0 \cdot (1/4) + 1^{2} \cdot (1/2) + 2^{2} \cdot (1/4)] - 1$$

$$\sigma^{2} = 0 + 1/2 + 4/4 - 1$$

 $\sigma^2 = 1/2 \quad \rightarrow \ \sigma \approx 0.7071$

5: Probability Distributions (Discrete Variables) 5.3 The Binomial Probability Distribution

Bi means two like bicycle

An experiment with only two outcomes is called a Binomial exp. Call one outcome *Success* and the other *Failure*.

Each performance of expt. is called a trial and are independent.

$$P(x) = \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x}$$

$$x = 0,...,n$$
Prob of exactly
num(x successes) P(x successes
and n-x failures)
(5.5)

n = number of trials or times we repeat the experiment. *x* = the number of successes out of *n* trials. *p* = the probability of success on an individual trial. $\binom{n}{x} = \frac{n!}{x!(n-x)!}$

5: Probability Distributions (Discrete Variables) 5.3 The Binomial Probability Distribution

Flip coin ten times.

Rowe, D.B.

MATH 1700

5: Probability Distributions (Discrete Variables) 5.3 The Binomial Probability Distribution

TABLE 2 page 713

$$P(x) = \frac{n!}{x!(n-x)!} p^{x} (1-p)^{n-x}$$

Binomial Probabilities $\begin{bmatrix} n \\ x \end{bmatrix} \cdot p^x \cdot q^{n-x}$ (continued)

Figure from Johnson & Kuby, 2012.

			N. A. Starter					P								
n	x	0.01	0.05	0.10	0.20	0.30	0.40	0.50	0.60	0.70	0.80	0.90	0.95	0.99	x	
10	0 1 2 3 4 5 6 7 8 9 10	.904 .091 .004 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+	.599 .315 .075 .010 .001 0+ 0+ 0+ 0+ 0+ 0+ 0+	.349 .387 .194 .057 .011 .001 0+ 0+ 0+ 0+ 0+ 0+	.107 .268 .302 .201 .088 .026 .006 .001 0+ 0+ 0+	.028 .121 .233 .267 .200 .103 .037 .009 .001 0+ 0+	.006 .040 .121 .215 .251 .201 .111 .042 .011 .002 0+	.001 .010 .044 .117 .205 .246 .205 .117 .044 .010 .001	0+ .002 .011 .042 .111 .201 .251 .215 .121 .040 .006	0+ 0+ .001 .009 .037 .103 .200 .267 .233 .121 .028	0+ 0+ .001 .006 .026 .088 .201 .302 .268 .107	0+ 0+ 0+ 0+ .001 .011 .057 .194 .387 .349	0+ 0+ 0+ 0+ 0+ .001 .010 .075 .315 .599	0+ 0+ 0+ 0+ 0+ 0+ 0+ 0+ .004 .091 .904	0 1 2 3 4 5 6 7 8 9 10	
X		0		1	2	3	4		5	6	7	8	3	9	10	
P(<i>x</i>)	$\frac{1}{102^4}$	$\frac{1}{10}$	10)24	$\frac{45}{1024}$	$\frac{120}{1024}$	<u>210</u> 102	<u>)</u> 4 1	<u>252</u> 1024	$\frac{210}{1024}$	$\frac{120}{1024}$	$\frac{4}{10}$	- <u>5</u> 24	$\frac{10}{1024}$	$\frac{1}{1024}$	

Questions?

Exam 1 on Tuesday! Bring pencil, calculator, scratch paper. (And caffeinated beverage!)

Will be given exam, formula sheet, binomial tables.