Class 6

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

Be The Difference.

Copyright by D.B. Rowe

Agenda:

Recap Chapter 4.1, 4.2

Lecture Chapter 4.3 - 4.5

Recap Chapter 4.1, 4.2

4: Probability4.1 Probability of Events

An **experiment** is a process by which a measurement is taken or observations is made. i.e. *flip coin* or *roll die*

An outcome is the result of an experiment. i.e. *Heads*, or 3

Sample space is a listing of possible outcomes. i.e. $S = \{H, T\}$

An **event** is an outcome or a combination of outcomes. i.e. A=even number when rolling a die={2,4,6}

4.1 Probability of Events

l=1

Property 1:
$$0 \le P(A_i) \le 1$$

Property 2: $\sum_{i=1}^{n} P(O_i) = 1$
 $i = 1, ..., n$

Approaches to probability. O_i are outcomes

(1) Empirical (AKA experimental)

empirical probability of $A = \frac{\text{number of times } A \text{ occured}}{\text{number of trials}}$

(2) Theoretical (AKA classical or equally likely)

theoretical probability of $A = \frac{\text{number of times } A \text{ occus in sample space}}{\text{number of elements in the sample space}}$

4: Probability - Empirical

4.1 Probability of Events – Law of large numbers

4: Probability - Theoretical4.1 Probability of EventsSo let's flip a coin twice.

Can flip three times.

$$P(HHH) = \frac{\# \text{ times } HHH \text{ occurs in } S}{\# \text{ elements in } S}$$

Chapter 4: Probability continued

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

Be The Difference.

Children's book

Click to LOOK INSIDE! IF YOU GIVE A PIG A PANCAKE av Laura Numeroff ILLUSTRATED IN Felicia Bond tilli

Figure from amazon.com

Venn Diagram

3 kindergarten classes

4.2 Rules of Probability – Probability of "A or B"

General Addition Rule Let *A* and *B* be two events defined in the sample space, *S*. In words: probability of *A* or B = probability of *A* + probability of *B* - probability of *A* and *B*

In algebra: P(A or B) = P(A) + P(B) - P(A and B) (4.4)

4.2 Rules of Probability – Probability of "*A* or *B*"

Union: A or B

Venn Diagram:

P(A or B) = P(A) + P(B)-P(A and B)

1

4: Probability4.2 Rules of Probability – "A or B"

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

Example: Pick Card, *A*=Heart, *B*=Ace

P(Heart or Ace)

P(Heart) =

Figure from Johnson & Kuby, 2012.

Marquette University

MATH 1700

4: Probability4.2 Rules of Probability – "A or B"

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

Example: Pick Card, *A*=Heart, *B*=Ace

P(Heart or Ace)

P(Heart) = 13 / 52

Figure from Johnson & Kuby, 2012.

Marquette University

MATH 1700

4: Probability 4.2 Rules of Probability – "A or B"

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

Example: Pick Card, *A*=Heart, *B*=Ace *P*(Heart or Ace)

$$P(Ace) =$$

Figure from Johnson & Kuby, 2012.

4: Probability4.2 Rules of Probability – "A or B"

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

Example: Pick Card, *A*=Heart, *B*=Ace *P*(Heart or Ace)

P(Ace) = 4 / 52

Figure from Johnson & Kuby, 2012.

4: Probability4.2 Rules of Probability – "A or B"

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

Example: Pick Card, *A*=Heart, *B*=Ace *P*(Heart or Ace)

P(Heart and Ace) =

Figure from Johnson & Kuby, 2012.

4: Probability4.2 Rules of Probability – "A or B"

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

Example: Pick Card, *A*=Heart, *B*=Ace *P*(Heart or Ace)

P(Heart and Ace) = 1/52

Figure from Johnson & Kuby, 2012.

Marquette University

MATH 1700

4: Probability4.2 Rules of Probability – "A or B"

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

Example: Pick Card, *A*=Heart, *B*=Ace

P(Heart or Ace)

P(Heart) =

P(Ace) =

P(Heart and Ace) =

Figure from Johnson & Kuby, 2012.

P(Heart or Ace) = P(Heart) + P(Ace) - P(Heart and Ace)

P(Heart and Ace) = 1/52

Figure from Johnson & Kuby, 2012.

P(Heart or Ace) = P(Heart) + P(Ace) - P(Heart and Ace)

P(Heart or Ace) = 13 / 52 + 4 / 52 - 1 / 52 = 16 / 52

4.3 Rules of Probability – Probability of "Not A"

Complimentary Events: The *compliment* of A, \overline{A} is the set of all sample points in the sample space that does not belong to event A. i.e. If A, is heads, then \overline{A} is tails.

Compliment Rule:

In words: probability of A compliment = one – probability of A

In algebra: $P(\overline{A}) = 1 - P(A)$

From $P(A) + P(\overline{A}) = 1$

i.e.
$$P(T) = 1 - P(H)$$

4.3 Rules of Probability – Probability of "Not A"

Compliment: $S = \{A, \overline{A}\}$

Venn Diagram:

$$P(\overline{A}) = 1 - P(A)$$

4.3 Rules of Probability – Probability of "A and B"

General Multiplication Rule Let A and B be two events defined in the sample space, S. In words: probability of A and B = probability of A × probability of B, knowing A

In algebra: $P(A \text{ and } B) = P(A) \cdot P(B | A)$

(4.5)

4.3 Rules of Probability – Probability of "*A* and *B*"

Event Intersection: A and B

Venn Diagram:

 $P(A \text{ and } B) = P(A) \cdot P(B \mid A)$

S

4: Probability4.3 Rules of Probability – "A and B"

P(A and B) = P(B)P(A | B)

Example: Pick Card, *A*=Heart, *B*=Ace

P(Heart and Ace)

P(Ace) =

Figure from Johnson & Kuby, 2012.

4: Probability4.3 Rules of Probability – "A and B"

P(A and B) = P(B)P(A | B)

Example: Pick Card, *A*=Heart, *B*=Ace

P(Heart and Ace)

P(Ace) = 4 / 52

Figure from Johnson & Kuby, 2012.

4: Probability4.3 Rules of Probability – "A and B"

P(A and B) = P(B)P(A | B)

Example: Pick Card, *A*=Heart, *B*=Ace

P(Heart and Ace)

P(Heart | Ace) =

Figure from Johnson & Kuby, 2012.

4: Probability4.3 Rules of Probability – "A and B"

P(A and B) = P(B)P(A | B)

Example: Pick Card, A=Heart, B=Ace

P(Heart and Ace)

P(Heart | Ace) = 1/4

Figure from Johnson & Kuby, 2012.

4: Probability4.3 Rules of Probability – "A and B"

P(A and B) = P(B)P(A | B)

Example: Pick Card, *A*=Heart, *B*=Ace

P(Heart and Ace)

P(Ace) =

P(Heart | Ace) =

Spades Heart Diamonds

Figure from Johnson & Kuby, 2012.

P(Heart and Ace) = P(Ace)P(Heart|Ace)

29

4: Probability4.3 Rules of Probability – "A and B"

P(A and B) = P(B)P(A | B)

Example: Pick Card, *A*=Heart, *B*=Ace

P(Heart and Ace)

P(Ace) = 4 / 52

P(Heart | Ace) = 1/4

Heart Diamonds

 $P(\text{Heart and Ace}) = P(\text{Ace})P(\text{Heart}|\text{Ace})^{\text{Figure from Johnson & Kuby, 2012.}}$

P(Heart and Ace) = (4 / 52)(1 / 4) = 1 / 52

4.3 Rules of Probability – Probability of "A and B"

Conditional Probability: Probability of event A given that event B has occurred is

 $P(A \mid B) = \frac{P(A \text{ and } B)}{P(B)}$

the "|" is spoken as "given" or "knowing"

4: Probability4.3 Rules of Probability – "A and B"

 $P(A \mid B) = \frac{P(A \text{ and } B)}{P(B)}$

Example: Pick Card, *A*=Heart, *B*=Ace *P*(Heart | *Ace*)

P(Heart and Ace) =

Figure from Johnson & Kuby, 2012.

4: Probability4.3 Rules of Probability – "A and B"

 $P(A \mid B) = \frac{P(A \text{ and } B)}{P(B)}$

Example: Pick Card, *A*=Heart, *B*=Ace *P*(Heart | *Ace*)

P(Heart and Ace) = 1/52

Figure from Johnson & Kuby, 2012.

4: Probability4.3 Rules of Probability – "A and B"

 $P(A \mid B) = \frac{P(A \text{ and } B)}{P(B)}$

Example: Pick Card, *A*=Heart, *B*=Ace *P*(Heart | *Ace*)

P(Ace) =

Figure from Johnson & Kuby, 2012.

4: Probability4.3 Rules of Probability – "A and B"

 $P(A \mid B) = \frac{P(A \text{ and } B)}{P(B)}$

Example: Pick Card, *A*=Heart, *B*=Ace *P*(Heart | *Ace*)

P(Ace) = 4 / 52

Figure from Johnson & Kuby, 2012.

4: Probability4.3 Rules of Probability – "A and B"

 $P(A \mid B) = \frac{P(A \text{ and } B)}{P(B)}$

Example: Pick Card, *A*=Heart, *B*=Ace *P*(Heart | *Ace*)

$$P(\text{Heart} | Ace) = \frac{P(\text{Heart and Ace})}{P(Ace)}$$

P(Heart | Ace) =

Figure from Johnson & Kuby, 2012.

4: Probability4.3 Rules of Probability – "A and B"

$$P(A \mid B) = \frac{P(A \text{ and } B)}{P(B)}$$

Example: Pick Card, *A*=Heart, *B*=Ace *P*(Heart | *Ace*)

P(Heart and Ace) = 1/52

P(Ace) = 4 / 52 $P(Heart | Ace) = \frac{P(Heart and Ace)}{P(Ace)}$ P(Heart | Ace) = (1 / 52) / (4 / 52) = 1 / 4

Figure from Johnson & Kuby, 2012.

Union Example (*A* or *B***):** Rolling a single die. *A*=event #1,2,3. *B*=event odd number.

1	2	3	4	5	6

Union Example (*A* or *B***):** Rolling a single die. A=event #1,2,3. *B*=event odd number. A={1,2,3}

Union Example (*A* or *B***):** Rolling a single die. *A*=event #1,2,3. *B*=event odd number. $B=\{1,3,5\}$

S

Union Example (*A* or *B***):** Rolling a single die. *A*=event #1,2,3. *B*=event odd number.

(A or B)

Intersection Example (*A* and *B***):** Rolling a single die. *A*=event #1,2,3. *B*=event odd number.

1	2	3	4	5	6

Intersection Example (*A* and *B***):** Rolling a single die. *A*=event #1,2,3. *B*=event odd number. $A=\{1,2,3\}$

Intersection Example (*A* and *B***):** Rolling a single die. *A*=event #1,2,3. *B*=event odd number. $B=\{1,3,5\}$

S

MATH 1700

Intersection Example (*A* and *B***):** Rolling a single die. *A*=event #1,2,3. *B*=event odd number. (*A* and *B*) = $\{1,3\}$

4: Probability4.4 Mutually Exclusive Events

Mutually exclusive events: Events that share no common elements

```
In algebra: P(A \text{ and } B) = 0
```

In words:

- 1. If one event has occurred, the other cannot.
- 2. None of the elements in one is in other.
- 3. In Venn diagrams, no intersection.
- 4. Intersection of events has a probability of zero.

4: Probability4.4 Mutually Exclusive Events

Mutually Exclusive: P(A and B) = 0

Venn Diagram:

4: Probability4.4 Mutually Exclusive Events

Mutually Exclusive Example: Rolling a single die. *A*=event #1,2. *B*=event #5,6.

A and
$$B = \emptyset$$

 $P(A \text{ and } B) = 0$

S

4: Probability 4.5 Independent Events

Independent events: Two events are independent if the occurrence or nonoccurence of one gives us no information about the likeliness of occurrence for the other.

In algebra: P(A) = P(A | B) = P(A | not B)

In words:

1. Prob of *A* unaffected by knowledge that *B* has occurred, not occurred, or no knowledge.

4: Probability 4.5 Independent Events

Two events *A* and *B* are independent if the probability of one is not "influenced" by the occurrence or nonoccurrence of the other.

Two Events A and B are independent if:

- 1. P(A) = P(A | B)
- 2. P(B) = P(B|A)
- 3. $P(A \text{ and } B) = P(A) \cdot P(B)$

Examples:?

4: Probability 4.5 Independent Events

Dependent events: Events that are not independent. That is, occurrence of one event does have an effect on the probability of occurrence of the other event.

In algebra: $P(A) \neq P(A \mid B)$

4.5 Independent Events – Special multiplication rule

Special multiplication rule:

Let *A* and *B* be two independent events defined in a sample space *S*.

In words: The probability of A and B = probability of A × probability of B

In algebra: $P(A \text{ and } B) = P(A) \cdot P(B)$

(4.7)

More generally $P(A \text{ and } B \text{ and } C \text{ and } D \text{ and } E) = P(A) \cdot P(B) \cdot P(C) \cdot P(D) \cdot P(E)$

Questions?

Homework: Read Chapter 4.3-4.5 Web Assign Chapter 4 # 59, 63, 65, 69, 85, 89, 91, 97, 105, 107, 113

Set one die to 4 (event *B*). Roll the other die 100 times. Let *A* be that a 3 comes up (7 is the sum of the two die). Calculate P(A | B) using the empirical approach.

What is the probability that a random kindergartener likes syrup (*B*) on their pancakes given that they like butter (*A*) on their pancakes?

4: Probability

Homework: Watch Catch 21 Episode CATCH 2 https://www.youtube.com/watch?v=N73GnjXfl48 The bonus round begins at time 12:28. After the Q♠,J♣,A♠ are drawn: What is the probability of an A as the 4th card? What is the probability of a "10" as the 4th card? What is the probability of an A as the 5th card? What is the probability of an A as the 6th card? What is the probability of a 6 as the 7th card? (10 Card is a 10 or a face card.)