
1

Class 5

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

Copyright by D.B. Rowe

Marquette University                                      MATH 1700



2

Agenda:

Recap Chapter 3.2 - 3.3

Lecture Chapter 4.1 -  4.2
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Recap Chapter 3.2 - 3.3
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3: Descriptive Analysis and Bivariate Data
3.2 Linear Correlation

Linear Correlation, r, is a measure of the strength of a linear 

relationship between two variables x and y.

                                   

Rowe, D.B.

1 1r−  

Figure from Johnson & Kuby, 2012.

positive relationship:

as x increases so does y

negative relationship:

as x increases y decreases

0.8r  −0r  0.5r  0.8r  0.5r  −
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2: Descriptive Analysis and Single Variable Data
2.4 Measures of Dispersion

Sample Variance: The mean of the squared deviations 

using n-1 as a divisor. p. 75 

There are two equivalent formulas that can be used. 

and

where      is ith data value,     is sample mean, n is sample size. 
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3: Descriptive Analysis and Bivariate Data
3.2 Linear Correlation
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3: Descriptive Analysis and Bivariate Data
3.2 Linear Correlation

Example:

Rowe, D.B.
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3: Descriptive Analysis and Bivariate Data
3.2 Linear Correlation

Example:

Rowe, D.B.
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3: Descriptive Analysis and Bivariate Data
3.3 Linear Regression

 We try different lines until we find the “best” one,                 .

 Move line until sum of the squared residuals is a minimum.

 
9

0 1ŷ b b x= +

is estimated y-intercept 
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3: Descriptive Analysis and Bivariate Data
3.3 Linear Regression

(x,y) pairs: (1,1),(3,2),(2,3),(4,4)

Plotted points.

The line goes through           .

The  is b1=0.8.

The y - intercept b0=0.5 .

Two points (2.5,2.5) and (0,.5).
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3: Descriptive Analysis and Bivariate Data
3.3 Linear Regression
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Chapter 4: Probability

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

Rowe, D.B.
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4: Probability
4.1 Probability of Events

Let’s talk about experiments, events, and probabilities.

An experiment is a process by which a measurement is taken 

or observations is made. 

i.e. flip coin or roll die

13
Rowe, D.B.
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4: Probability
4.1 Probability of Events

An outcome is the result of an experiment. i.e. Heads, or 3

Coin: O1=H, O2=T

Die: O1=1, O2=2, O3=3, O4=4, O5=5, O6=6

Sample space is a listing of possible outcomes. 

 S={O1,O2} or S={O1,O2,O3,O4,O5,O6}

Coin: S={H,T}

Die: S={1,2,3,4,5,6}

14
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4: Probability
4.1 Probability of Events

An event A is an outcome or a combination of outcomes. 

i.e. A=even number when rolling a die={2,4,6}

The probability of an event A is written P(A).

i.e. P(A)=P(even number when rolling a die)

            =P({2,4,6})

            =3/6

15
Rowe, D.B.
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4: Probability
4.1 Probability of Events - Properties

If the event A can never occur, then P(A)=0.

If the event A is sure to occur, then P(A)=1.

Property 1

In words:

 “A probability is always a numerical value between 0 and 1.”

In algebra:

16
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0 each ( ) 1P A 

A is an event

P(Heads on coin flip), 

or  P(3 on roll of die)
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4: Probability
4.1 Probability of Events - Properties

Property 2

In words:

 “The sum of probabilities for all outcomes of an experiment 

is equal to exactly 1.”

In algebra:

17
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4: Probability
4.1 Probability of Events

Now that we talked about events and probabilities, 

how do we get probabilities of events?

 

There are three different approaches to probability.

(1) Empirical  (AKA experimental)

(2) Theoretical (AKA classical or equally likely)

(3) Subjective (expression of belief, Bayesian, not discuss)

18
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Probability of a event: The relative frequency with which 

that event can be expected to occur.
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4: Probability
4.1 Probability of Events

The “ ' “ in P '(A) means an empirical probability.

19
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Empirical (Observed) Probability: P '(A)

In words: 

In algebra:

number of times  occured
empirical probability of 

number of trials

A
A =

( )
'( )

n A
P A

n
=
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4: Probability
4.1 Probability of Events – Law of large numbers

Had computer flip 

a coin 500 times.

Flip # on x axis

P'(H) on y axis.

This shows convergence 

to true value of 1/2.

20
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# of heads
'( )

# coin flips
P H =

F O  X       P′

 1 T 0    0.0000

 2 T 0    0.0000

 3 H 1    0.3333

 4 T 1    0.2500

 5 T 1    0.2000

 6 H 2    0.3333

 7 H 3    0.4286

 8 T 3    0.3750

 9 T 3    0.3333

10 T 3    0.3000
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4: Probability
4.1 Probability of Events – Law of large numbers

Had computer flip 

a coin 500 times.

Flip # on x axis

P'(H) on y axis.

This shows convergence 

to true value of 1/2.

21
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# of heads
'( )

# coin flips
P H =

bad in short run

good in long run

Play Video
https://mssc.mu.edu/~daniel/math1700/fall2024/flipvid1.mp4
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4: Probability
4.1 Probability of Events – Law of large numbers

Had computer flip 

a coin 500 times.

Flip # on x axis

P'(H) on y axis.

This shows convergence 

to true value of 1/2.

22
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bad in short run

# of heads
'( )

# coin flips
P H =

good in long run

Play Video
https://mssc.mu.edu/~daniel/math1700/fall2024/flipvid5.mp4
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4: Probability
4.1 Probability of Events

In the empirical method you actually have to perform the 

experiment of flipping the coin.

The empirical approach may be off in the short run.

Suppose you get on a streak and out of 10 flips all 10 are 

heads?

By the empirical method we would say that P'(H) = 1.

23
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4: Probability
4.1 Probability of Events

24
Rowe, D.B.

Theoretical (Expected) Probability: P(A)

In words: 

In algebra:

number of times  occus in sample space
theoretical probability of 

number of elements in the sample space

A
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( )

n A
P A

n S
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4: Probability
4.1 Probability of Events

So let's examine what could potentially happen when we 

flip a coin twice.

Before flip.

Rowe, D.B.
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4: Probability
4.1 Probability of Events

So let's flip a coin twice.

Flip once.

H

T

# times H occurs in 
( )

# elements in 

S
P H

S
=

Rowe, D.B.

{ , }S H T=

Sample space: 

listing of outcomes

for 1 flip

Marquette University                                      MATH 1700



27

4: Probability
4.1 Probability of Events

So let's flip a coin twice.

Flip twice.

H

T

H

H

T

T

Rowe, D.B.

# times  occurs in 
( )

# elements in 

HH S
P HH

S
=

{ , , , }S HH HT TH TT=

Sample space: 

listing of outcomes

for 2 flips
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4: Probability
4.1 Probability of Events

So let's flip a coin three times.

Can flip three times.

H
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T
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# times  occurs in 
( )

# elements in 
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Sample space: 

listing of outcomes

for 3 flips
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4: Probability
4.1 Probability of Events

In the theoretical method you do not have to perform the 

experiment of flipping the coin.

If each of the events are equally likely, then the theoretical 

approach is correct from the start.

If the events are not equally likely, then the theoretical method 

is not correct and we should use a different approach.

29
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4: Probability
4.1 Probability of Events – Probabilities as odds

30
Rowe, D.B.

If the odds in favor of an event A are a to b (or a:b), then

1. The odds against event A are b to a (or b:a).

2. The probability of event A is                      . 

3. The probability that event A will not occur is    

( )
a

P A
a b

=
+

(not )
b

P A
a b

=
+
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4: Probability
4.1 Probability of Events

Therefore, if we are at the race track and we define

 

A = our horse wins the race.

If the odds against A are 100 to 1 (100:1),

then the probability of A is 

31
Rowe, D.B.

1 1
( )

100 1 101
P A = =

+

The odds against event A are b to a (or b:a).

The probability of event A is                    . ( )
a

P A
a b

=
+
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4: Probability
4.2 Conditional Probability of Events

We use conditional probability in our daily lives and 

sometimes do not realize it.

What is the probability that the Professor will put an exam 

question on topic x?

What is the probability that the Professor will put an exam 

question on topic x given that he covered topic x in class?

32
Rowe, D.B.
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4: Probability
4.2 Conditional Probability of Events

What is the probability that the Professor will put an exam 

question on topic x? 

What is the probability that the Professor will put an exam 

question on topic x given that he covered topic x in class?

Let A = Professor will put an exam question on topic x

       B = he covered topic x in class

P(A)   vs.   P(A|B)

33
Rowe, D.B.
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4: Probability
4.2 Conditional Probability of Events

34
Rowe, D.B.

Conditional probability an event will occur:  A conditional 

probability is the relative frequency with which an event can 

be expected to occur under the condition that that additional 

preexisting information is known about some other event.

 ,   the “|” is spoken as “given” or “knowing”( | )P A B
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4: Probability
4.2 Conditional Probability of Events

Example: Roll two die. 

Let A be that 10 is the sum of the two die.

P(A)=

Let B that the first die is a 4.

P(B)=

What is P(A|B)?.

 P(A|B)=

35
Rowe, D.B.

Figure from Johnson & Kuby, 2012.
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4: Probability
4.2 Conditional Probability of Events

Example: Roll two die. 

Let A be that 10 is the sum of the two die.

P(A)=3/36

Let B that the first die is a 4.

P(B)=

What is P(A|B)?.

 P(A|B)=

36
Rowe, D.B.

Figure from Johnson & Kuby, 2012.
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4: Probability
4.2 Conditional Probability of Events

Example: Roll two die. 

Let A be that 10 is the sum of the two die.

P(A)=3/36

Let B that the first die is a 4.

P(B)=6/36

What is P(A|B)?.

 P(A|B)=

37
Rowe, D.B.

Figure from Johnson & Kuby, 2012.
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4: Probability
4.2 Conditional Probability of Events

Example: Roll two die. 

Let A be that 10 is the sum of the two die.

P(A)=3/36

Let B that the first die is a 4.

P(B)=6/36

What is P(A|B)?.

 P(A|B)=1/6

38
Rowe, D.B.

Figure from Johnson & Kuby, 2012.
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4: Probability

Questions?

 Homework: Finish Reading Chapter 4

 WebAssign

 Chapter 4 # 3,11,12,13, 31, 51, 57

                                        

 Roll a pair of die 100 times. 

 Let A be that 7 is the sum of the two die.

 Calculate P(A) using the empirical approach.

 
Rowe, D.B.
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