Class 4

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

Be The Difference.

Copyright by D.B. Rowe

Agenda:

Recap Chapter 2.5, 3.1

Lecture Chapter 3.2, 3.3

Recap Chapter 2.5

2: Descriptive Analysis and Single Variable Data 2.5 Measures of Position

Measures of Position: Quartiles - ranked data into quarters

L = lowest value H = highest value Q_2 = median Q_1 = 25% smaller Q_3 = 75% smaller IQR = $Q_3 - Q_1$

MATH 1700

2: Descriptive Analysis and Single Variable Data 2.5 Measures of Position

Measures of Position: percentiles - rank data into 100ths

L = lowest value H = highest value $P_k =$ value where k% are smaller

		Ran	ked d	ata, 1	ncreas	ing o	rder		
	1%	1%	1%	1%		1%	1%	1%	
1	L P	$P_1 I$	P_2 P_2	P_3 P_3	$P_4 P$	P ₉₇ F	P ₉₈ F	P ₉₉ H	I

rank data

 p_k halfway between value and next one average of A^{th} and $(A+1)^{\text{th}}$ values

 p_k is value in next largest position, B value

Figure from Johnson & Kuby, 2012.

MATH 1700

2: Descriptive Analysis and Single Variable Data 2.5 Measures of Position

Standard score, or z-score: The position a particular value of *x* has relative to the mean, measured in standard deviations.

$$z_i = \frac{i^{\text{th}} \text{ value - mean}}{\text{std. dev.}} = \frac{x_i - \overline{x}}{s}$$

There can be *n* of these because we have $x_1, x_2, ..., x_n$.

2: Descriptive Analysis and Single Variable Data

Questions?

Homework: Read Chapter 2.5-2.7 WebAssign Chapter 2 # 115, 123c-d, 129, 137

Recap Chapter 3.1

3: Descriptive Analysis and Bivariate Data

3.1 Bivariate Data: two qualitative

Cross-tabulation tables or contingency tables

Example: Construct a 2×3 table.

Name	Gender	Major	Name	Gender	Major	Name	Gender	Major
Adams	Μ	LA	Feeney	Μ	Т	McGowan	M	BA
Argento	F	BA	Flanigan	M	LA	Mowers	F	BA
Baker	M	LA	Hodge	F	LA	Ornt	M	Т
Bennett	F	LA	Holmes	M	Т	Palmer	F	LA
Brand	M	Т	Jopson	F	Т	Pullen	M	Т
Brock	M	BA	Kee	\sim	BA	Rattan	\sim	BA
Chun	F	LA	Kleeberg	M	LA	Sherman	F	LA
Crain	M	Т	Light	M	BA	Small	F	Т
Cross	F	BA	Linton	F	LA	Tate	M	BA
Ellis	F	BA	lopez	M	Т	Yamamoto	M	LA

			Major	
Gender	LA	BA	Т	Row Total
M F	5 6	6 4	7 2	18 12
Col. Total]]	10	9	30

M = male F = female LA = liberal arts BA = business admin T = technology

Figures from Johnson & Kuby, 2012.

3: Descriptive Analysis and Bivariate Data

3.1 Bivariate Data: one qualitative and one quantitative

Example:

Design A ($n = 6$)	Design B ($n = 6$)	Design C ($n = 6$)			
37 36 38	33 35 38	40 39 40			
34 40 32	34 42 34	41 41 43			

Figures from Johnson & Kuby, 2012.

- 3: Descriptive Analysis and Bivariate Data
- 3.1 Bivariate Data: two quantitative, Scatter Diagram

Example: Push-ups

Student	1	2	3	4	5	6	7	8	9	10
Push-ups, x	27	22	15	35	30	52	35	55	40	40
Sit-ups, y	30	26	25	42	38	40	32	54	50	43

Input variable: independent variable, *x*. **Output variable:** dependent variable, *y*.

Scatter Diagram: A plot of all the ordered pairs of bivariate data on a coordinate axis system.

(x,y) ordered pairs.

Figures from Johnson & Kuby, 2012.

3: Descriptive Analysis and Bivariate Data

Questions?

Homework: Read Chapter 3 WebAssign Chapter 3 # 3, 7, 15

- 3: Descriptive Analysis and Bivariate Data
- 3.1 Bivariate Data: two quantitative, Scatter Diagram

A previous class' data.

Gender, height, weight.

Use height vs. weight (no gender).

3: Descriptive Analysis and Bivariate Data

3.1 Bivariate Data: Scatter Diagram of previous class data.

Chapter 3: Descriptive Analysis and Presentation of Bivariate Data continued

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

Be The Difference.

3: Descriptive Analysis and Bivariate Data 3.2 Linear Correlation

Linear Correlation, *r*, is a measure of the strength of a linear relationship between two variables *x* and *y*.

Figure from Johnson & Kuby, 2012.

3: Descriptive Analysis and Bivariate Data

3.2 Linear Correlation

Values closer to +1 or -1 mean a stronger relationship.

Values near 0 mean a weak association.

Positive values mean a positive relationship. positive relationship means as x increases so does y

Negative values mean a negative relationship. negative relationship means as *x* increases *y* decreases

3: Descriptive Analysis and Bivariate Data 3.2 Linear Correlation

Perfect Positive Correlation

Horizontal-No Correlation

Perfect Negative Correlation

Vertical—No Correlation

Figure from Johnson & Kuby, 2012.

3: Descriptive Analysis and Bivariate Data **3.2 Linear Correlation**

Computing the linear correlation coefficient r.

1.
$$\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})$$
$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{(n-1)s_x s_y}$$
$$S_x = \text{std } x\text{'s}$$
$$s_y = \text{std } y\text{'s}$$
$$SS(x) = \sum_{i=1}^{n} x_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} x_i\right)^2$$
$$SS(x) = \sum_{i=1}^{n} y_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} y_i\right)^2$$
$$SS(x) = \sum_{i=1}^{n} x_i y_i - \frac{1}{n} \left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} y_i\right)$$

1. and 2. are equivalent.

 $\sum_{i=1}^{n} x_i$

3: Descriptive Analysis and Bivariate Data 3.2 Linear Correlation Example: $r = \frac{SS(xy)}{\sqrt{SS(x)SS(y)}}$

Student	Push-ups, >	x x ²	Sit-ups, y	y y ²	ху
]	27	729	30	900	810
2	22	484	26	676	572
3	15	225	25	625	375
4	35	1,225	42	1,764	1,470
5	30	900	38	1,444	1,140
6	52	2,704	40	1,600	2,080
7	35	1,225	32	1,024	1,120
8	55	3,025	54	2,916	2,970
9	40	1,600	50	2,500	2,000
10	40	1,600	43	1,849	1,720
	$\sum x = 351$	$\sum x^2 = 13,717$	$\Sigma y = 380$	$\Sigma y^2 = 15,298$	$\sum xy = 14,257$
	sum of X	sum of X-	sum of y	sum of y-	sum of xy

Figure from Johnson & Kuby, 2012.

3: Descriptive Analysis and Bivariate Data

15

25

35

42

30

38

22 26

3.2 Linear Correlation Example: Push-ups, x 27 Situres v 30

$$SS(x) = \sum_{i=1}^{n} x_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} x_i\right)^2 =$$

$$SS(y) = \sum_{i=1}^{n} y_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} y_i\right)^2 =$$

$$SS(xy) = \sum_{i=1}^{n} x_i y_i - \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right) \left(\sum_{i=1}^{n} y_i \right) =$$
$$r = \frac{SS(xy)}{\sqrt{1-x}} =$$

$$-\frac{1}{\sqrt{SS(x)SS(y)}}$$

i=1

35

32

52

40

$\sum x_i = 351$ $\sum_{i=1}^{n} x_i^2 = 13717$ i=1n $\sum y_i = 380$ *i*=1 $\sum_{i=1}^{n} y_i^2 = 15298$ i=1п $\sum x_i y_i = 14257$

40

43

40

50

55

54

MATH 1700

3: Descriptive Analysis and Bivariate Data Linear Correlation

$$S: Descriptive Analysis and Bivariate Data
S: Linear Correlation
Example: Pushups, x 27 22 15 35 30 52 35 55 40 40
Steps, y 30 26 25 42 38 40 32 54 50 43
$$SS(x) = \sum_{i=1}^{n} x_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} x_i\right)^2 = 13717 - \frac{(351)^2}{10} = 1396.9$$

$$SS(y) = \sum_{i=1}^{n} y_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} y_i\right)^2 = 15298 - \frac{(380)^2}{10} = 858.0$$

$$SS(xy) = \sum_{i=1}^{n} x_i y_i - \frac{1}{n} \left(\sum_{i=1}^{n} x_i\right) \left(\sum_{i=1}^{n} y_i\right) = 14257 - \frac{(351)(380)}{10} = 919.0$$

$$r = \frac{SS(xy)}{\sqrt{SS(x)SS(y)}} = \frac{919.0}{\sqrt{(1396.9)(858.0)}} = 0.84$$

$$Constant = 0.84$$$$

Marquette University

3: Descriptive Analysis and Bivariate Data 3.2 Linear Correlation Example: Previous class' data!

$$SS(x) = \sum_{i=1}^{n} x_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right)^2$$

$$SS(xy) = \sum_{i=1}^{n} x_i y_i - \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right) \left(\sum_{i=1}^{n} y_i \right)$$

$$\sum_{i=1}^{n} x_i^2 = 121820$$

$$\sum_{i=1}^{n} y_i = 3992$$

$$\sum_{i=1}^{n} y_i^2 = 605818$$

$$\sum_{i=1}^{n} x_i y_i = 269982$$

Rowe, D.B.

MATH 1700

Marquette University

MATH 1700

3: Descriptive Analysis and Bivariate Data 3.2 Linear Correlation

Understanding Linear Correlation Skip for now. Read on own.

Causation and Lurking Variables

Correlation does not necessarily imply causation. Just because two things are highly related does not mean that one causes the other.

Soda sales go up, flu incidence goes down. Does soda cause flu to go down?

Regression analysis finds the equation of a line that "best" describes the relationship between the two variables (*x* and *y*).

What do we mean by "best?"

How is "bestness" determined?

Least squares regression.

Let's say that we are given points as in figure. y ° Imagine that there is an underlying line $y = \beta_0 + \beta_1 x$ that the data fits to (or comes from). 3 β_0 is y-intercept and β_1 is slope. The points are considered to be 1 $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$ 0 6 2 3 5 4 0 1 random error We want to find the "best" fit line to the data.

We can try different lines until we find the "best" one.

Imagine that there is an underlying line $y = \beta_0 + \beta_1 x$

that the data fits to (or comes from).

 β_0 is y-intercept and β_1 is slope.

The points are considered to be

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$
 $i = 1, ..., n$

 b_0 is estimated *y*-intercept and b_1 is estimated slope.

What is criteria for bestness? \rightarrow Sum of squared distances. y ° The points are considered to be $y_i = \beta_0 + \beta_1 x_i + \varepsilon_i \leq \varepsilon$ random ε 20 error The "best" line value at x_i is $\hat{y}_i = b_0 + b_1 x_i$ 3 These vertical distances ε_i 2 are called residuals. 1 i = 1, ..., n $\mathcal{E}_i = y_i - b_0 - b_1 x_i$ 0 L 0 2 5 3 4 1 random error fit error

What is criteria for bestness? \rightarrow Sum of squared distances. y " $\hat{y} = b_0 + b_1 x$ We move around the line until the sum of the squared residuals ε 20 4 3 is made a minimum. Least squares line. 2 This is a measure of misfit and a 1 criterion for the "best" line. 0 L 0 2 3 5 6 1 4 х

We don't actually have to move the line around.

We can find the "best" fit line that minimizes the

sum of the squared residuals by using Equations 3.5-3.7a.

$$b_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})(y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}} \quad \text{or} \quad b_{1} = \frac{SS(xy)}{SS(x)}$$

then $b_0 = \overline{y} - b_1 \overline{x}$ because line goes through $(\overline{x}, \overline{y})$.

3: Descriptive Analysis and Bivariate Data 3.3 Linear Regression

3: Descriptive Analysis and Bivariate Data 3.3 Linear Regression

$$b_0 = \overline{y} - b_1 \overline{x} =$$

3: Descriptive Analysis and Bivariate Data 3.3 Linear Regression

Marquette University

MATH 1700

Marquette University

MATH 1700

3: Descriptive Analysis and Bivariate Data

Questions?

Homework: Read Chapter 3.2-3.3 WebAssign Chapter 3 # 33, 44, 53, 59, 75

Page 169 Problem 3.105

$$r = b_1 \sqrt{\frac{\mathrm{SS}(x)}{\mathrm{SS}(y)}}$$