MATH 1700

Class 3

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

Be The Difference.

Copyright by D.B. Rowe

Agenda:

Recap Chapter 2.1 – 2.4

Lecture Chapter 2.5

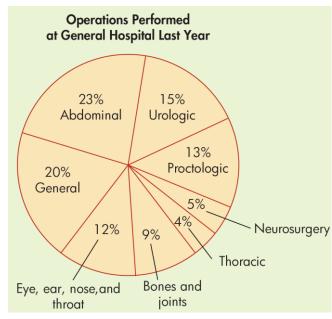
Lecture Chapter 3.1

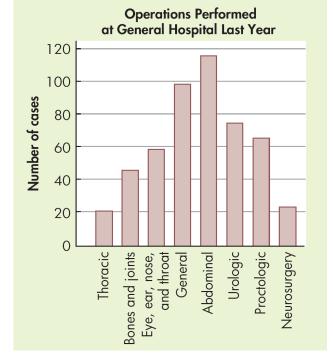
Recap Chapter 2.1 – 2.4

Chapter 2: Descriptive Analysis and Presentation of Single-Variable Data

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

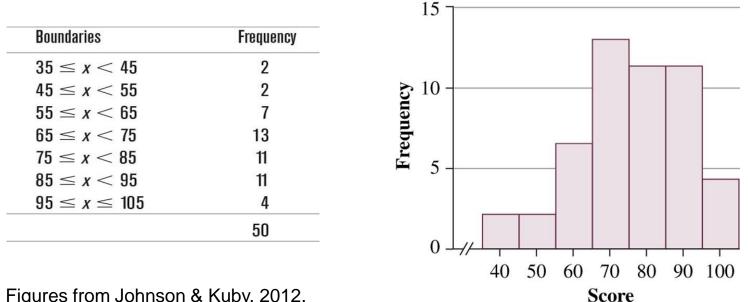

Be The Difference.


2: Descriptive Analysis and Single Variable Data 2.1 Graphs - Qualitative Data

Circle (pie) graphs and bar graphs:

Circle is parts to whole as angle.

Bar graph is amount in each category as rectangular areas.



Figures from Johnson & Kuby, 2012.

2: Descriptive Analysis and Single Variable Data **2.2 Frequency Distributions and Histograms**

Statistics Exam Scores

60	47	82	95	88	72	67	66	68	98	90	77	86
58	64	95	74	72	88	74	77	39	90	63	68	97
70	64	70	70	58	78	89	44	55	85	82	83	
72	77	72	86	50	94	92	80	91	75	76	78	

Figures from Johnson & Kuby, 2012.

2: Descriptive Analysis and Single Variable Data 2.3 Measures of Central Tendency

Sample Mean: Usual average, p. 63 $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$ **Sample Median:** Middle value, p. 64 n odd, $\tilde{x} = \frac{n+1}{2}$ value n even, avg $\frac{n}{2} & \frac{n}{2} + 1$ values **Sample Mode:** Most often, p. 66 $\hat{x} = \text{most often}$

Measures of central tendency characterize center of distribution.

Measures of dispersion characterize the variability in the data.

MATH 1700

Range: H - L, p. 74

Deviation from mean: value minus sample mean, p. 74

$$i^{th}$$
 deviation from mean = $x_i - \overline{x}$

Sample Variance: avg. squared dev using *n*-1 in den, p. 76

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2} \qquad s^{2} = \frac{1}{n-1} \left\{ \sum_{i=1}^{n} x_{i}^{2} - \left[\left(\sum_{i=1}^{n} x_{i} \right)^{2} / n \right] \right\}$$

Sample Standard Deviation: $s = \sqrt{s^2}$

2: Descriptive Analysis and Single Variable Data 2.3, 2.4 Measures of Central Tendency and Dispersion

Example: Data values: 1,2,2,3,4 $\overline{x} = 2.4$ $\tilde{x} = 2$ $\hat{x} = 2$ $s^2 = 1.3$ s = 1.15 2 хI data - Excel HOME FILE INSERT PAGE LAYOUT FORMULAS DATA REVIEW VIEW - 2 🛃 Conditional Form Calibri - 11 - \equiv General \$ - % 9 💷 Format as Table -Paste Cell Styles -€.0 .00 .00 →.0 - <u>A</u> -€ → ≫ -G Font G Alignment G. Number Clipboard Type in fx E6 =STDEV(A1:A5) What you А С E F G Н D 1 1 want. 2 2 2 3 4 3 Answer 5 4 1.3 1.140175 6 2.4 2 2 appears. 7

 $\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$

 $\tilde{x} =$ middle value $\hat{x} =$ most often value

$$s^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \overline{x})^{2}$$
$$s = \sqrt{s^{2}}$$

=AVERAGE(A1:A5) =MEDIAN(A1:A5) =MODE(A1:A5) =VAR(A1:A5) =STDEV(A1:A5)

Chapter 2: Descriptive Analysis and Presentation of Single-Variable Data Continued

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

Be The Difference.

Measures of Position: Describe the relative position a specific data value possesses in relation to rest of data when in ranked order.

Quartiles: Values of the variable that divide ranked data into quarters.

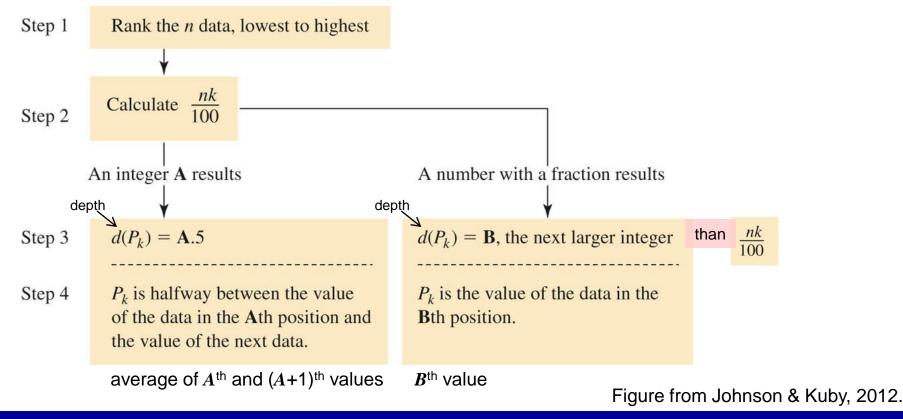
		Ranked data	, increasing of	order					
L = lowest value	0501	2501	2501	2501					
H = highest value	25%	25%	25%	25%					
$Q_2 = \tilde{x} = median$	L	Q_1 Q_1	$Q_2 \qquad Q$	$Q_3 H$					
\tilde{Q}_1 = data value where 25% are smaller									
Q_3 = data value where 75% are smaller									

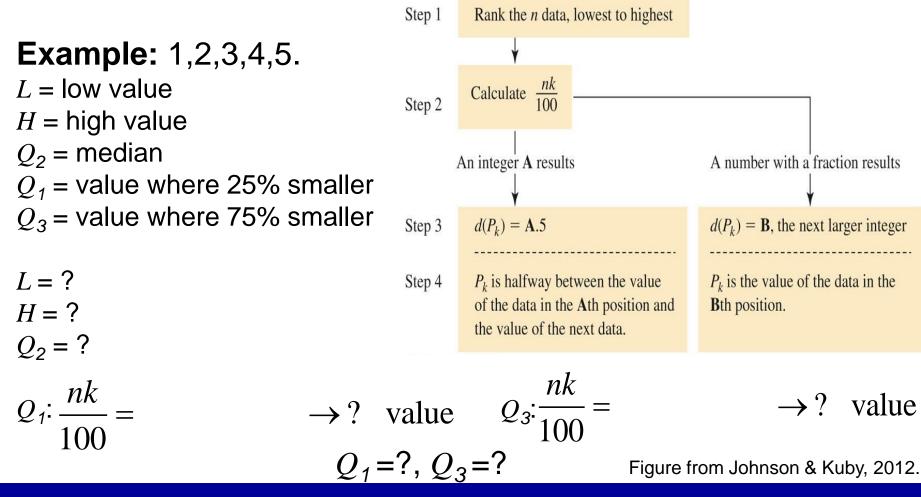
Figure from Johnson & Kuby, 2012.

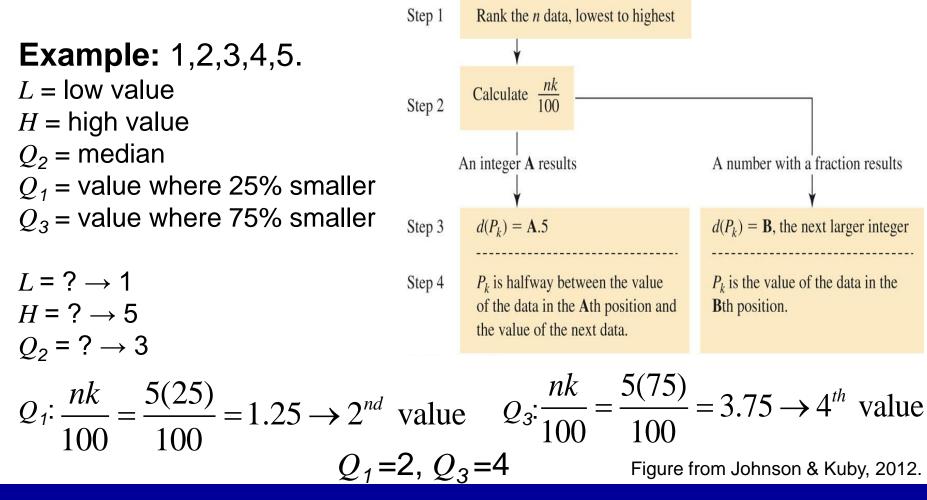
1 1 1 / • • 1

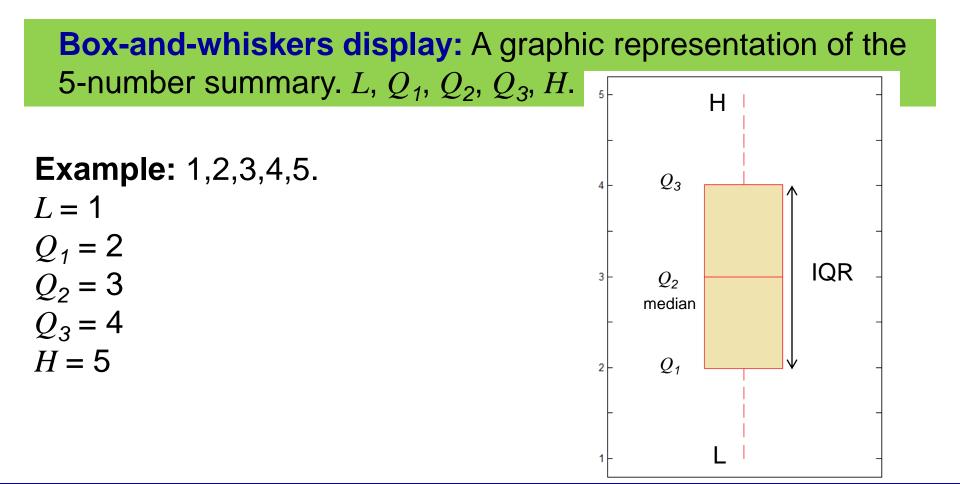
5-number summary 1. L = lowest value 2. $Q_1 =$ data value where 25% are smaller 3. $Q_2 = \tilde{x} =$ median (where 50% are smaller) 4. $Q_3 =$ data value where 75% are smaller 5. H = highest value

Interquartile range: The difference between the first and third quartiles. It is the range of the middle 50% of the data.


$$IQR = Q_3 - Q_1$$


More generally, percentiles. Quartiles are special percentiles.


Percentile: Values of the variable that divide ranked data into 100 equal subsets.


Ranked data, increasing order L = lowest value1% 1% 1% 1% 1% 1% 1% H = highest value P_{k} = value where k% are smaller L $P_1 P_2 P_3 P_4 P_{97} P_{98} P_{99} H$ Ranked data, increasing order You've taken standardized at most k%at most (100 - k)%exams and received a %ile. L P_k Η Figures from Johnson & Kuby, 2012.

The Percentile Process: Four basic steps for *k*th percentile.

Rowe, D.B.

MATH 1700

Standard score, or z-score: The position a particular value of *x* has relative to the mean, measured in standard deviations.

$$z_i = \frac{i^{\text{th}} \text{ value - mean}}{\text{std. dev.}} = \frac{x_i - \overline{x}}{s}$$

(2.11)

There can be *n* of these because we have $x_1, x_2, ..., x_n$.

Standard score, or z-score: Example: 1, 2, 3, 4, 5

$$z_i = \frac{x_i - \overline{x}}{s} \qquad \qquad \overline{x} = 3$$
$$s = 1.58$$

$$z_1 = \frac{x_1 - \overline{x}}{s} = ?$$

Standard score, or z-score: Example: 1, 2, 3, 4, 5

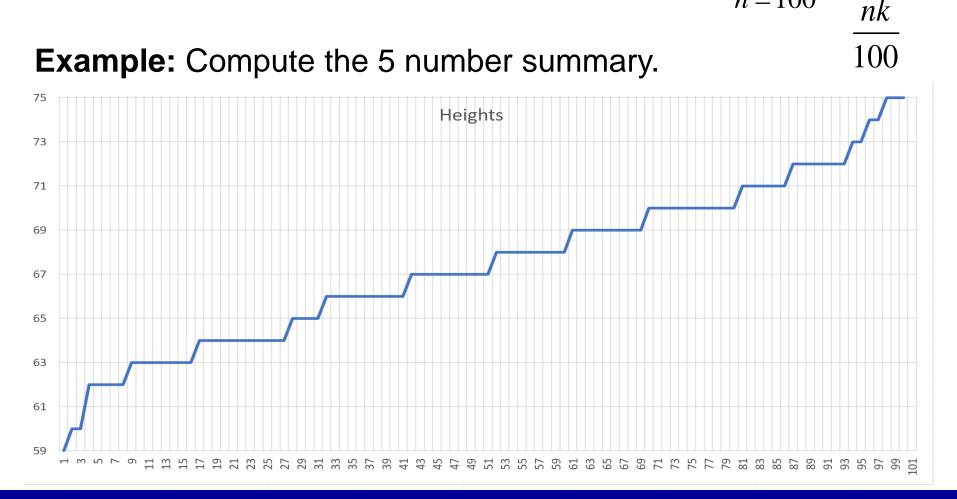
$$z_i = \frac{x_i - \overline{x}}{s} \qquad \qquad \overline{x} = 3$$
$$s = 1.58$$

$$z_1 = \frac{x_1 - \overline{x}}{s} = \frac{1 - 3.00}{1.58} = -1.3$$

$$z_{1} = -1.2649$$
$$z_{2} = -0.6325$$
$$z_{3} = 0$$
$$z_{4} = 0.6325$$
$$z_{5} = 1.2649$$

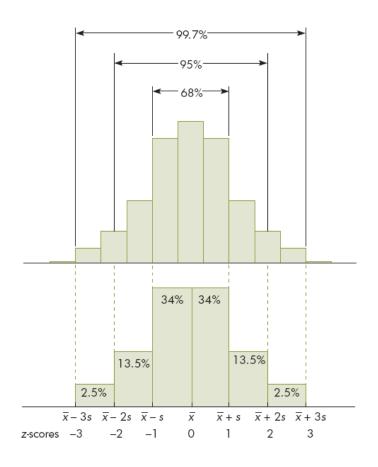
MATH 1700

n = 100


Example: What is your *z* score?

Height <i>x</i>	
Deviation $dev = x - \overline{x}$	
$z\text{-score}$ $z = \frac{x - \overline{x}}{s}$	

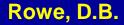
MATH 1700


2: Descriptive Analysis and Single Variable Data 2.5 Measures of Position n = 100

2: Descriptive Analysis and Single Variable Data 2.6 Interpreting and Understanding Standard Deviation

Read this section (and 2.7) on your own.

Bell Curve Normal Distribution Gaussian Distribution



23

2: Descriptive Analysis and Single Variable Data

Questions?

Homework: Read Chapter 2.5-2.7 WebAssign Chapter 2 # 115, 123c-d, 129, 137

Chapter 3: Descriptive Analysis and Presentation of Bivariate Data

Daniel B. Rowe, Ph.D.

Department of Mathematical and Statistical Sciences

Be The Difference.

3: Descriptive Analysis and Bivariate Data 3.1 Bivariate Data

Bivariate data: The values of two different variables that are obtained from the same population element.

Qualitative-Qualitative Qualitative-Quantitative Quantitative-Quantitative

When Qualitative-Qualitative **Cross-tabulation tables** or **contingency tables** Sometimes called r by c ($r \times c$)

3: Descriptive Analysis and Bivariate Data 3.1 Bivariate Data: two qualitative

	M = male	LA = liberal arts
Example:	F = female	BA = business admin
		T = technology

Name	Gender	Major	Name	Gender	Major	Name	Gender	Major
Adams	M	LA	Feeney	M	Т	McGowan	M	BA
Argento	F	BA	Flanigan	\mathbf{M}	LA	Mowers	F	BA
Baker	\sim	LA	Hodge	F	LA	Ornt	\wedge	Т
Bennett	F	LA	Holmes	\bigwedge	Т	Palmer	F	LA
Brand	\bigwedge	Т	Jopson	F	Т	Pullen	\sim	Т
Brock	\sim	BA	Kee	\mathbb{M}	BA	Rattan	\sim	BA
Chun	F	LA	Kleeberg	M	LA	Sherman	F	LA
Crain	\bigwedge	Т	Light	M	BA	Small	F	Т
Cross	F	BA	Linton	F	LA	Tate	M	BA
Ellis	F	BA	Lopez	M	Т	Yamamoto	M	LA

3.1 Bivariate Data: two qualitative

Example: Construct a 2×3 table.

Name	Gender	Major	Name	Gender	Major	Name	Gender	Major
Adams	Μ	LA	Feeney	Μ	Т	McGowan	Μ	BA
Argento	F	BA	Flanigan	M	LA	Mowers	F	BA
Baker	M	LA	Hodge	F	LA	Ornt	M	Т
Bennett	F	LA	Holmes	M	Т	Palmer	F	LA
Brand	M	Т	Jopson	F	Т	Pullen	M	Т
Brock	M	BA	Kee	M	BA	Rattan	Μ	BA
Chun	F	LA	Kleeberg	M	LA	Sherman	F	LA
Crain	M	Т	Light	M	BA	Small	F	Т
Cross	F	BA	Linton	F	LA	Tate	M	BA
Ellis	F	BA	lopez	M	Т	Yamamoto	Μ	LA

	Major					
Gender	LA	BA	Т			
M F	(5) (6)	(6) (4)	(7) (2)			

M = male F = female LA = liberal arts BA = business admin T = technology

Figures from Johnson & Kuby, 2012.

3.1 Bivariate Data: two qualitative

Example: Percentages based on grand total (next slide).

		Major						
Gender	LA		BA		Т			
M F		(5) (6)		(6) (4)		(7) (2)		

	Major					
Gender	LA	BA	Т	Row Total		
M F	5 6	6 4	7 2	18 12		
Col. Total	11	10	9	30		

M = male F = female LA = liberal arts BA = business admin T = technology

Figures from Johnson & Kuby, 2012.

3.1 Bivariate Data: two qualitative

Example: Percentages based on grand total.

	Major					
Gender	LA	BA	Т	Row Total		
M F	5 6	6 4	7	18 12		
Col. Total	11	10	9	30		

			Major	
Gender	LA	BA	Т	Row Total
M F	1 <i>7</i> % 20%	20% 13%	23% 7%	60% 40%
Col. Total	37%	33%	30%	100%

7/30*100%=23%

M = male F = female LA = liberal arts BA = business admin T = technology

Divide all numbers by grand total.

Figures from Johnson & Kuby, 2012.

3.1 Bivariate Data: two qualitative

Example: Percentages based on row totals.

	Major					
Gender	LA	BA	Т	Row Total		
M F	5 6	6 4	7	(18) 12		
Col. Total]]	10	9	30		

	Major					
Gender	LA	BA	Т	Row Total		
M F	28% 50%	33% 33%	39% 17%	100% 100%		
Col. Total	37%	33%	30%	100%		

7/18*100%=39%

M = male F = female LA = liberal arts BA = business admin T = technology

Divide all row numbers by row total.

Figures from Johnson & Kuby, 2012.

3.1 Bivariate Data: two qualitative

Example: Percentages based on column totals.

	Major					
Gender	LA	BA	Т	Row Total		
M F	5 6	6 4	7	18 12		
Col. Total]]	10	9	30		

	Major					
Gender	LA	BA		Row Total		
M F	45% 55%	60% 40%	<mark>78</mark> % 22%	60% 40%		
Col. Total	100%	100%	100%	100%		

7/9*100%=78%

M = male F = female LA = liberal arts BA = business admin T = technology

Divide all row numbers by column total.

Figures from Johnson & Kuby, 2012.

- 3: Descriptive Analysis and Bivariate Data
- 3.1 Bivariate Data: one qualitative and one quantitative

Example: Stopping Distances (in feet) for three treads.

Design A $(n = 6)$	Design B ($n = 6$)	Design C ($n = 6$)			
37 36 38	33 35 38	40 39 40			
34 40 32	34 42 34	41 41 43			

- **3: Descriptive Analysis and Bivariate Data**
- 3.1 Bivariate Data: one qualitative and one quantitative

Example:

Design A (<i>n</i> =	: 6)	Design B (Desig	Design C $(n = 6)$			
37 36 3 34 40 3	82	33 35 34 42	38 34	40 41	39 41	40 43	
	Design A	Design B	Design C				
High Q ₃	40 38	42 38	43 41				
Median	36.5	34.5	40.5				
Q_1	34	34	40				
Low	32	33	39	_			
	Design A	Design	B Design C				
Mean Standard deviatio	36.2 n 2.9	36.0 3.4	40.7 1.4				

Figures from Johnson & Kuby, 2012.

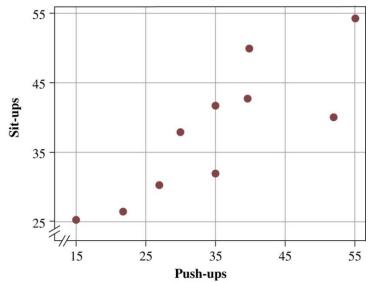
3: Descriptive Analysis and Bivariate Data 3.1 Bivariate Data: two quantitative

When have paired quantitative data, represent as (x,y) ordered pairs.

Input variable called independent variable, *x*. **Output variable** called dependent variable, *y*.

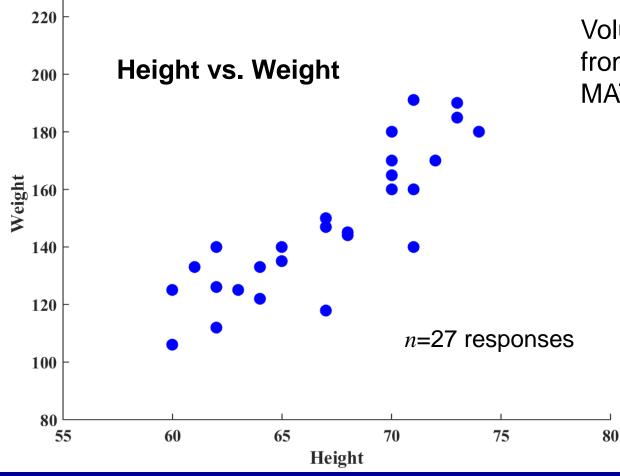
Scatter Diagram: A plot of all the ordered pairs of bivariate data on a coordinate axis system. The input variable, x, is plotted on the horizontal axis and the output variable, y, is plotted on the vertical axis.

MATH 1700


3: Descriptive Analysis and Bivariate Data

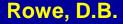
3.1 Bivariate Data: two quantitative, Scatter Diagram

Example: Push-ups


Student	1	2	3	4	5	6	7	8	9	10
Push-ups, x	27	22	15	35	30	52	35	55	40	40
Sit-ups, y	30	26	25	42	38	40	32	54	50	43

Mr. Chamberlain's Physical Fitness Course

Figures from Johnson & Kuby, 2012.


3: Descriptive Analysis and Bivariate Data 3.1 Bivariate Data: Scatter Diagram Our data.

Voluntarily provided data from students in a previous MATH 1700 class.

Questions?

Homework: Read Chapter 3 WebAssign Chapter 3 # 3, 7, 15

