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Complex Numbers

A complex number z has a real part x and an imaginary part y is

z = x + iy

where i is the imaginary unit (electrical engineers use j)

i =
√
−1 .

Complex numbers can represent two real values simultaneously.

The angular frequency is defined to be

ω = 2πν

where ω is in radians/sec and ν is in Hz.
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Complex Numbers

Euler’s formula is

ei2πνt = cos(2πνt) + i sin(2πνt)

and also
e−i2πνt = cos(2πνt) − i sin(2πνt)

which by addition and subtraction can be used to find

cos(2πνt) =
ei2πνt + e−i2πνt

2
and

sin(2πνt) =
ei2πνt − e−i2πνt

2i
.
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Delta Functions

The Dirac delta function is defined to be

δ(ν − ν0) =

{
∞ if ν = ν0
0 if ν 6= ν0
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Delta Function

It is simultaneously infinitely narrow and infinitely high.
∫ +∞

−∞
δ(ν − ν0)dν = 1.

The Dirac delta function may also be represented in terms of the integral

δ(ν − ν0) =

∫ +∞

−∞
e−i2π(ν−ν0)t dt

or it can be defined in terms of its effect on other functions:∫ +∞

−∞
F (ν)δ(ν − ν0) dν = F (ν0).

This is similar to the “selecting” property of the Fourier Transform opera-
tion that was mentioned earlier.
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One Dimensional FT-Continuous

The FT of a continuous function f(t) is

F (ν) =

∫ +∞

−∞
f(t)e−i2πνt dt

also denoted as F{f(t)} and its inverse to be

f(t) =

∫ +∞

−∞
F (ν)e+i2πνt dν

also denoted as F−1{F (ν)}.

Don’t forget that
eiα = cos(α) + i sin(α) .
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One Dimensional FT-Continuous

F (ν) =

∫ ∞

−∞
[f(t)][cos(2πνt) − i sin(2πνt)] dt

=

∫ ∞

−∞
[f(t)] cos(2πνt) dt − i

∫ ∞

−∞
[f(t)] sin(2πνt) dt

= FC(ν) − iFS(ν)

FC(ν) =

∫ ∞

−∞


∑

j

Aj cos(2πνjt) +
∑

j

Bj sin(2πνjt)


 cos(2πνt) dt

FS(ν) =

∫ ∞

−∞


∑

j

Aj cos(2πνjt) +
∑

j

Bj sin(2πνjt)


 sin(2πνt) dt

The cos() sin() and sin() cos() cross terms are zero.
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One Dimensional FT-Continuous

F (ν) =

∫ ∞

−∞
[f(t)][cos(2πνt) − i sin(2πνt)] dt

=

∫ ∞

−∞
[f(t)] cos(2πνt) dt − i

∫ ∞

−∞
[f(t)] sin(2πνt) dt

= FC(ν) − iFS(ν)

FC(ν) =

∫ ∞

−∞


∑

j

Aj cos(2πνjt)


 cos(2πνt) dt

FS(ν) =

∫ ∞

−∞


∑

j

Bj sin(2πνjt)


 sin(2πνt) dt

Can move the integral past the sum.

9



MCW Biophysics 230: NMR DB Rowe

One Dimensional FT-Continuous

F (ν) =

∫ ∞

−∞
[f(t)][cos(2πνt) − i sin(2πνt)] dt

=

∫ ∞

−∞
[f(t)] cos(2πνt) dt − i

∫ ∞

−∞
[f(t)] sin(2πνt) dt

= FC(ν) − iFS(ν)

FC(ν) =
∑

j

Aj

∫ ∞

−∞
cos(2πνjt) cos(2πνt) dt

FS(ν) =
∑

j

Bj

∫ ∞

−∞
sin(2πνjt) sin(2πνt) dt

The cos() cos() and sin() sin() integrals are nonzero only when ν = νj.

Nonzero values at constituent frequencies where Aj and Bj nonzero.
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One Dimensional FT-Continuous

F (ν) =

∫ ∞

−∞
[f(t)][cos(2πνt) − i sin(2πνt)] dt

=

∫ ∞

−∞
[f(t)] cos(2πνt) dt − i

∫ ∞

−∞
[f(t)] sin(2πνt) dt

= FC(ν) − iFS(ν)

FC(ν) =
∑

j

1

2
Aj[δ(ν + νj) + δ(ν − νj)]

FS(ν) =
∑

j

1

2
Bj[δ(ν + νj) − δ(ν − νj)]

The cos() cos() and sin() sin() integrals are δ functions at ν = νj.

The Aj and Bj amplitudes represent the strength of the cosines and sines.

11



MCW Biophysics 230: NMR DB Rowe

One Dimensional FT-Continuous

Fourier Transform properties.
Property Function Transform

Linearity af(x) + bg(x) aF (k) + bG(k)

Similarity f(ax) 1
|a|F (ka)

Shifting f(x − a) e−i2πkaF (k)

Derivative
d`f(x)

dx` (i2πk)`F (k)
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One Dimensional FT-Continuous

Convolution of functions f(x) and g(x) is defined as

f(x) ∗ g(x) =

∫ +∞

−∞
f(α) g(x − α) dα .

Further

F {f(x) ∗ g(x)} = F (k) · G(k) .

and

F {f(x) · g(x)} = F (k) ∗ G(k) ,
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One Dimensional FT-Continuous

Convolution properties.
f(x) ∗ g(x) = g(x) ∗ f(x) commutative

f(x) ∗ [g(x) ∗ h(x)] = [f(x) ∗ g(x)] ∗ h(x) associative

f(x) ∗ [g1(x) + g2(x)] = f(x) ∗ g1(x) + f(x) ∗ g2(x) distributive

d f(x)∗g(x)
dx = d f(x)

dx ∗ g(x) = f(x) ∗ d g(x)
dx derivative

h(x − x0) = f(x − x0) ∗ g(x) = f(x) ∗ g(x − x0) shift

if h(x) = f(x) ∗ g(x)
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One Dimensional FT-Continuous

Now you know everything about Fourier transforms.

Questions?
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Chapter 9: One-Dimensional Fourier Imaging,
k-space and Gradient Echos
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9.1: Signal and Effective Spin Density

9.1.1 Complex Demodulated Signal
Recall Equation (7.28).

s(t) ∝ ω0

∫
e−t/T2(~r)M⊥(~r, 0)B⊥(~r)e(i(Ω−ω0)t+φ0(~r)−θB(~r)) d3r

(7.28)
Assumptions:
It is assumed that the RF coils are uniform so that:
1) The initial magnetization φ0,
2) The initial receive field direction θB, and
3) The receive field amplitude B⊥
are independent of position, ~r.

4) The total sampling time Ts � T ∗
2 and thus e−t/T2 ≈ 1.

The e−t/T2, eiφ0, and e−θB are incorporated into Λ = e−t/T2eiφ0e−θB

and B⊥ taken out of the integral. Also define φ(~r, t) = −ω0t.
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Chapter 9.1: 1D Fourier Imaging

Having done the aforementioned, Equation (7.28) becomes

s(t) = ω0ΛB⊥

∫
M⊥(~r, 0)ei(Ωt+φ(~r,t)) d3r (9.1)

The signal is generalized to include a position and time dependent ω(~r, t)
so that the accumulated phase φ(~r, t) = −ω0t is generalized to be

φ(~r, t) = −
∫ t

0
ω(~r, t′) dt′. (9.2)

In the presence of a uniform static field, ω(~r, t′) = ω0 and

φ(~r, t) = −ω0t (9.3)

where ω0 = γB0 from Equation (1.1), see also Equation (5.22).
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Chapter 9.1: 1D Fourier Imaging

9.1.2 Magnetization and Effective Spin Density
In Chapter 6, using quantum mechanical arguments it was shown
(Equation 6.11, also Equation 1.3) that the initial proton magnetization
for ~ω0 � κT is

M0 '
1

4
ρ0

γ2~
κT

B0 (6.11)

before the gradient field is turned on.

ρ0 is the ‘spin density’, spins per unit volume
γ is the gymagnetic ratio, γ = 2.68 × 108rad/s/T
h is Plancks constant, ~ = h/(2π), h = 1.05 × 10−34J · s
κ is Boltzmann’s constant, κ = 1.38 × 10−23J/K
T is the temperature in Kelvin
B0 is the external (main) magnetic field.
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Chapter 9.1: 1D Fourier Imaging

This is generalized to be position dependent through the spin density

M⊥(~r, 0) = M0(~r) =
1

4
ρ0(~r)

γ2~
κT

B0 (9.3)

and combined with Equation (9.1) to obtain

s(t) =

∫
ρ(~r)ei(Ωt+φ(~r,t)) d3r (9.4)

where the 3D spin density ρ(~r) is

ρ(~r) ≡ ω0ΛB⊥M0(~r) =
1

4
ω0ΛB⊥ρ0(~r)

γ2~
κT

B0 (9.5)

Let’s focus interest on one dimension, say z.
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Chapter 9.1: 1D Fourier Imaging

The signal in Equation (9.4) becomes

s(t) =

∫
ρ(z)ei(Ωt+φ(z,t)) dz (9.6)

where

ρ(z) =

∫
ρ(~r) dxdy. (9.7)

Note:
Equation (9.6) holds for multiple RF pulses
when TR � T1 and TE � T2!

Because e−TR/T1 ≈ 0 and e−TE/T2 ≈ 1.

Otherwise use ρ(z, T1, T2) or in general ρ(~r, T1, T2).
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Chapter 9.2: Frequency Encoding and the FT

The objective is to determine ρ(z).

9.2.1 Frequency Encoding of the Spin Position
The Larmor frequency of a spin will be linearly proportional to its
position along the z direction with the addition of a linearly varying field.

If a linearly varying field is added to the static field, then

Bz(z, t) = B0 + zG(t) (9.8)

is the z component. And note that the derivative of the magnetic field is

Gz =
∂Bz

∂z
. (9.9)
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Chapter 9.2: Frequency Encoding and the FT

In the presence of the linearly varying magnetic field along the z axis, the
variation in the angular frequency of the spins is

ω(z, t) = γB0 + γzG(t)

= ω0 + ωG(z, t) . (9.10)

For a linearly varying magnetic field, according to Equation (9.8),
the deviation ωG(z, t) from the Larmor frequency ω0 (Equation 2.27) is

ωG(z, t) = γzG(t) (9.11)

This is refereed to as “frequency encoding.”
The accumulated phase is

φG(z, t) = −
∫ t

0
ωG(z, t′) dt′ (9.12)

= −γz

∫ t

0
G(t′) dt′ (9.13)
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Chapter 9.2.2: The 1D Imaging equation and the FT

Using the precessing frequency ω(z, t) as in Equation (9.10) and
Assumption:
The demodulating frequency is Ω = ω0, the signal becomes

s(t) =

∫
ρ(z)eiφG(z,t) dz (9.14)

Note: Look at Equation (9.6)

s(t) =

∫
ρ(z)ei(Ωt+φ(z,t)) dz (9.6)

=

∫
ρ(z)ei(ω0t−ω0t−φG(z,t)) dz

=

∫
ρ(z)eiγz

∫ t
0 G(t′) dt′ dz

24
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Chapter 9.2.2: The 1D Imaging equation and the FT

For the linear gradient field this leads to

s(t) =

∫
ρ(z)e−iγz

∫ t
0 G(t′)dt′ dz

s(k) =

∫
ρ(z)e−i2πkz dz (9.15)

where the spatial frequency k (analogous to ν in FT Review) is

k(t) = γ−
∫ t

0
G(t′) dt′ . (9.16)

The signal s(k) is the Fourier transform of the spin density!
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Chapter 9.2.2: The 1D Imaging equation and the FT

This means that the spin density ρ(z) can be found as the inverse Fourier
transform of the signal s(k)

ρ(z) =

∫
s(k)e+i2πkz dk (9.17)

Measure s(k) then compute ρ(z).
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Chapter 9.2.2: The 1D Imaging equation and the FT

9.2.3 The Coverage of k-Space
When the gradient field is constant over time, Gz(t) = G, Equation (9.16)

k(t) = γ−
∫ t

0
G(t′) dt′ (9.16)

becomes

k = γ− Gt. (9.18)

We are going to sample at a regular points in space which means we only
need to sample at constant time intervals.
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Chapter 9.2.2: The 1D Imaging equation and the FT

9.2.4 Rect and Sinc Functions
The boxcar or rect function of width z0 is

rect

(
z

z0

)
≡





0 z < −z0
2

1 −z0
2 < z < z0

2
0 z > z0

2

(9.19)

and the its Fourier transform is

F (k) = z0sinc(πz0k) . (9.20)
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These two functions form a Fourier transform pair.
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Chapter 9.2.2: The 1D Imaging equation and the FT

F (k) =

∫ +∞

−∞
rect

(
z

z0

)
e−i2πkzdz

=

∫ +
z0
2

−z0
2

e−i2πkzdz

= − 1

i2πk
[e−i2πk

z0
2 − e−i2πk

−z0
2 ]

= − 1

i2πk
[ cos(πkz0) + i sin(πkz0) − cos(−πkz0) − i sin(−πkz0) ]

=
sin(πkz0)

πk
.

Using the definition:
sinc(πz0k) =

sin (πz0k)

(πz0k)
, k ∈ R.

Therefore the Fourier transform of the rect function is:

F (k) = F
{

rect

(
z

z0

)}
= z0sinc(πz0k) .
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Chapter 9.3: Simple Two-Spin Example

Consider two spins at z = ±z0.

Refer to Figure 9.1a.

Nothing is going on.

The two spins are in equilibrium.

The equilibrium magnetization is

M0(z) =
1

4
ω0ΛB⊥ρ0(z)

γ2~
κT

B0
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Chapter 9.3: Simple Two-Spin Example

Apply a 90◦ RF pulse x direction.

Spins tipped in y direction

Into the transverse plane,

A single frequency results as in
Figure 9.1b.
(T2 decay neglected)
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Chapter 9.3: Simple Two-Spin Example

Apply the RF field again fol-
lowed by a gradient Gz in the
z direction in the interval t1 to t2.

The spin at +z0 will rotate
clockwise and the spin at −z0
will precess counterclockwise at
the same rate. (Fan out.)

While G is applied
(i.e. t1 < t < t2), the spins
will have rotated through angles
φ(z0, t) = −γGz0(t − t1) and
φ(−z0, t) = γGz0(t − t1).
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Chapter 9.3: Simple Two-Spin Example

Recall Equations (9.15) and (9.16). Note that Equation (9.16) becomes

k(t) = γ− G · (t − t1)

because of a constant gradient and integration from t1 to t, while Equation
(9.15) with the integral is replaced by a sum to becomes

s(t) =
∑

z=±z0

ρ(z)e−i2πkz

which is with t1 = 0

s(t) = ρ(−z0)e
iγGtz0 + ρ(+z0)e

−iγGtz0

= s0(e
iγGtz0 + e−iγGtz0)

= 2s0 cos γGtz0 t1 < t < t2 (9.21)

where ρ(−z0) = ρ(+z0) = s0 and Euler’s cosine formula have been used.
This is the signal in Figure 9.1c.
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Chapter 9.3: Simple Two-Spin Example

This can also be expressed as

s(k) = 2s0 cos 2πkz0 0 < k < k2 ≡ γ− Gt2 (9.22)

with k = γ− Gt. From s(k) and G, use Equation (9.17)

ρ(z) =

∫ +∞

−∞
s(k)e+i2πkz dk

=

∫ +∞

−∞
2s0 cos (2πkz0)e

+i2πkz dk

= s0

∫ +∞

−∞

(
ei2πkz0 + e−i2πkz0

)
e+i2πkz dk

= s0

∫ +∞

−∞

(
ei2πk(z−z0) + ei2πk(z+z0)

)
dk

= s0

∫ +∞

−∞
ei2πk(z−z0) dk +

∫ +∞

−∞
ei2πk(z+z0) dk

= s0[δ(z − z0) + δ(z + z0)] (9.23)
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Chapter 9.3.1: Dirac Delta Function

A Dirac delta function is such that

δ(z − a) = 0 if z 6= a (9.24)

and

∫ z2

z1

δ(z − a) dz =

{
1 a ∈ (z1, z2)
0 a 6∈ (z1, z2)

. (9.25)

The delta function picks out a particular value of the function

∫ +∞

−∞
δ(z − a)f(z) dz = f(a) . (9.26)
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Chapter 9.3.1: Dirac Delta Function

Consider the inverse Fourier transform of the rect function rect
( z
2K

)

I(z,K) ≡
∫ +K

−K
rect

( z

2K

)
ei2πkz dk

=
1

i2πz
ei2πkz

∣∣∣∣
K

−K

=
1

πz2i

(
ei2πKz − e−i2πkz

)

=
sin(2πKz)

πz
= 2Ksinc(2πKz) (9.27)

Now let K → +∞
lim

K→+∞
I(z,K) = δ(z) (9.28)

Which is Equation (9.24).
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Chapter 9.3.1: Dirac Delta Function
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I(z,K) =
2Ksinc(2πKz)

So the Fourier transform of a constant function (rect of infinite width) is
a Dirac δ-function. And vise versa.
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Chapter 9.4: Gradient Echo and k-Space Diagrams

Replace the dumbbell two-spin
example with a cylinder with an
arbitrary z-distribution of spins
ρ(z) as in Figure 9.2 (on left).
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Chapter 9.4: Gradient Echo and k-Space Diagrams

Nothing is going on.

Everything is in equilibrium.

The equilibrium magnetization is

M0(z) =
1

4
ω0ΛB⊥ρ0(z)

γ2~
κT

B0
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Chapter 9.4: Gradient Echo and k-Space Diagrams

Apply a 90◦ RF pulse x direction.

Spins tipped in y direction

Into the transverse (x, y) plane,

Produce M⊥(z) as in Figure 9.2b.

Note the decaying signal.
(T2 decay not neglected)
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Chapter 9.4: Gradient Echo and k-Space Diagrams

Apply a 90◦ RF pulse x direction.

Spins tipped in y direction

Into the transverse (x, y) plane,

Produce M⊥(z) as in Figure 9.2b.

Apply Gz between t1 and t2 as
in Figure 9.2c.

Note the more rapidly decaying
signal and the dephasing.
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Chapter 9.3: Simple Two-Spin Example

Apply a 90◦ RF pulse x direction.

Spins tipped in y direction

Into the transverse (x, y) plane,

Produce M⊥(z) as in Figure 9.2b.

Apply Gz between t1 & t2 as in
Figure 9.2c.

Note the more rapidly decaying
signal and the dephasing.

Reverse gradient between t3 & t4.
An echo is formed at t′ = 0
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Chapter 9.4.1: The Gradient Echo

Look at Figure 9.2.
While the first gradient lobe is applied, the phase is of the form

φG(z, t) = +γGz(t − t1) t1 < t < t2 (9.31)

(for +z spins, negative for −z spins).

While the second gradient lobe is applied, the phase accumulation is of the
form

φG(z, t) = +γGz(t2 − t1) − γGz(t− t3) t3 < t < t4 (9.32)

By selecting (t4 − t3)/2 = t2 − t1, the time at which the spins rephase,
the echo, is at

t = t3 + (t2 − t1) ≡ TE (9.33)

for all z.
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Chapter 9.4.1: The Gradient Echo

The echo occurs at the point when the area under the second lobe just
cancels out the area under the first lobe. (The gradients do not have to be
constant or of same height or length.)∫

G(t) dt = 0 (9.34)

Let’s reparameterize time so that it is zero at TE.

t′ ≡ t − t3 − (t2 − t1) = t − TE (9.35)

Having reparameterized time, the phase during the second gradient lobe
can be written as

φG(z, t) = +γGzt′ − (t4 − t3)/2 < t′ < (t4 − t3)/2 (9.36)
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Chapter 9.4.1: The Gradient Echo

The signal in Equation (9.14) in terms of t′ that we will “record” during
the second gradient lobe is

s(t′) =

∫
ρ(z)e−iγGzt′ dz

=

∫
ρ(z)e−i2π(γ−Gt′)z dz

=

∫
ρ(z)e−i2πk(t′)z dz. − (t4 − t3)/2 < t′ < (t4 − t3)/2

(9.37)

where we noted that k = γ− Gt′ and k(t′) denotes that k is a function of
t′.
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Chapter 9.4.1: The Gradient Echo

The signal can be written solely in terms of the variable k as

s(k) =

∫
ρ(z)e−i2πkz dz − kmax < k < kmax (9.38)

where kmax = γ− G(t4 − t3)/2.

This means that when we observe the signal s(t) from t = t3 to t = t4
which is the same as observing the signal s(t′) from time t′ = −(t4− t3)/2
to t′ = (t4− t3)/2 we are observing the signal s(k) at the different k-space
values from k = −kmax to k = kmax.

We cover that range of k-space.

Voila, Equation (9.38) is a Fourier transform.

Take the inverse Fourier transform to get ρ(z).
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Summary:

Because B(z) = B0 + zG (assuming G(z) = G) is changing along z,

the Larmor frequency ωz = ω0 + ωG(z) is also changing along z,

so the signal is changing along the z direction with ωG(z) = γzG.

The observed signal at time t is s(t) =
∫

ρ(z)e−iγzGt dz.

The observed signal at spatial frequency k is s(k) =
∫

ρ(z)e−i2πkz dz,
where k = γ− Gt′, and t′ = t − tE.

An inverse FT ρ(z) =
∫

s(k)e+i2πkz dk gives us ρ(z),

the (proton) spin density which changes z which is our “intensity” image.

Homework
Do 9.1, Look at 9.3, Do 9.4, Read the rest of the chapter, 9.4.2-.
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